联系我们
意见反馈

关注公众号

获得最新科研资讯

植物-生物互作与免疫中心朱旺升课题组

简介 植物抗病分子遗传研究组

分享到
实验室简介

      植物-生物互作与免疫中心朱旺升课题组成立于2019年10月,现有教授1人,青年研究员1人,博士后1人,研究生10人。实验室主要围绕国家农业绿色发展重大需求,开展禾谷镰孢菌致病机理和玉米抗病虫基因挖掘和功能解析,以期为玉米抗病育种提供新的基因资源,并为构建玉米病虫害绿色防控技术体系提供理论基础。目前,团队获中国农业大学人才引进基金、国家重点研发计划和国家自然基金委的资金支持。

      朱旺升,中国农业大学植物保护学院教授、博士生导师,中国农业大学青年新星A类人才。2005年本科毕业于华中农业大学,2008年硕士毕业于东华大学,2008-2010年任职北京冷泉港生物科技有限公司,担任小动物活体成像技术专家。随后,2014年在澳大利亚昆士兰大学/蒙纳士大学获得博士学位,2019年09月在德国马普生物学研究所(图宾根)博士后研究出站后,于2019年10月以“杰出人才”引进中国农业大学,组建植物抗病分子遗传实验室。现任植物生物安全系主任,院学术委员会和学位委员会委员,第十二届中国植物病理学会理事和副秘书长,农业农村部植物检疫性有害生物监测与防控重点实验室学术委员会委员,Frontiers in Plant Science编委。主要研究方向为植物抗病遗传,发现了一类调控植物先天免疫的受小肽调控的新型钙通道(2023, Molecular Cell);揭示了病原菌靶标植物免疫中枢的分子机制和植物演化的攻防策略(2023, Cell Host & Microbe);发现了玉米基因组内含子5’剪接位点附近单核苷酸多态性可以通过影响mRNA的选择性剪接进而调控基因表达(2023, Plant Biotechnology Journal), 为通过基因编辑精准调控基因表达提供了新的思路。近年来,致力于玉米真菌病害抗性基因挖掘和利用,并开展玉米真菌病害禾谷镰孢菌致病机制研究。以第一作者或通讯作者(含共同)在Molecular Cell, Cell Host & Microbe, Plant Biotechnology Journal, Genome Biology, Plant Physiology和PLoS Genetics等国际重要学术期刊上发表多篇研究论文,获批发明专利1项。

祝贺刘丹丹同学和队友勇夺2024年度中国农业大学羽毛球联赛冠军

       2024年4月14日,我院羽毛球队选手们在2024年中国农业大学“院际杯”羽毛球联赛中凭借出色的技艺和顽强的拼搏精神,一路过关斩将,最终荣获第一名。实验室刘丹丹同学为学院羽毛球队队员。祝贺丹丹,祝贺球队!

实验室第一篇关于玉米的抗病基因克隆工作在PBJ以封面文章正式发表

        2023年,实验室从玉米中鉴定了一个具有抗病和抗虫功能的新基因ZmBGLU17发现其编码具有质外体和液泡双定位的糖苷水解酶,证明其质外体定位介导了玉米对茎腐病抗性,液泡定位则参与玉米对亚洲玉米螟的抗性;并发现感病玉米品种在ZmBGLU17 内含子存在单碱基变异,该变异能改变其mRNA选择性剪切,从而导致抗性丧失,为改良抗病虫玉米提供了新靶点。该工作于2023年11月27日在Plant Biotechnology Journal线上发表。近日,2024年3月21日,该论文被PBJ期刊遴选为封面文章在2024年第四期正式发表,论文一作刘闯博士生设计了该封面,展示了该基因编码蛋白在液泡和质外体分别贡献植物抗虫次生代谢物DIMBOA和抗病次生代谢产物木质素合成,进而抵御虫害和病害侵染的主要信息。全文链接:https://doi.org/10.1111/pbi.14242

《农业生物技术学报》编委推荐课题组最近关于植物核心免疫受体helper NLR的工作

        在植物和病原互作过程中,由细胞内NLR受体介导的先天免疫反应在作物抗病中发挥关键作用。已知多个NLRs受体传递的免疫信号都汇聚于下游的一类关键节点蛋白—辅助型NLRs(hNLRs)。病原菌通过分泌毒性因子—效应蛋白,进入到宿主细胞并靶向植物关键免疫调控组分。研究病原菌能否抑制植物hNLR蛋白以及植物演化的防御机制,将有助于深入理解植物-病原菌互作的共进化关系。中国农业大学植物保护学院朱旺升教授团队成功鉴定到一个能够直接攻击hNLR蛋白的病原菌效应蛋白,并深入揭示了植物的反攻击策略。研究发现来自病原细菌Pst DC3000的一个效应蛋白AvrPtoB可以直接攻击植物广泛存在的hNLR蛋白ADR1-L1和ADR1-L2,并诱导其蛋白降解。该研究进一步揭示了植物应对该攻击的两个策略:一是通过同源蛋白序列多样化逃避病原菌效应蛋白的攻击,二是通过NLR受体SNC1监控被攻击的ADR1-L1并触发下游免疫反应,以维持植物免疫应答的完整性。该研究结果近期发表在《Cell Host & Microb》期刊上,研究揭示了病原效应蛋白攻击hNLR蛋白的分子机制和植物的反攻击策略,为通过人工改造NLR逃避病原菌攻击和寻找关键抗病基因提供了理论基础,并为抗病作物分子设计提供了新的研究思路。

编者:梁祥修(华南农业大学)

信息来源:Cell Host & Microbe, 2023, 31(11): 1792-1803

转载于农业生物技术学报公众号(https://mp.weixin.qq.com/s/3wSbS6Mg9iRA9KVqw1svww)

Small proteins modulate ion channel-like ACD6 to regulate immunity in Arabidopsis thaliana

ACCELERATED CELL DEATH 6 (ACD6) mediates a trade-off between growth and defense in Arabidopsis thaliana. However, the precise biochemical mechanism by which ACD6 and related proteins in plants act remains enigmatic. Here, we identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ~7 kDa proteins that differentially interact with specific ACD6 variants. MHA1L enhances accumulation of an ACD6 complex, thereby increasing activity of the ACD6 standard allele for regulating plant growth and defenses. ACD6 is a multipass transmembrane protein with intracellular ankyrin repeats that are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, likely mediated by ACD6 itself and with MHA1L as a direct regulator of ACD6.

The plant immune receptor SNC1 monitors helper NLRs targeted by a bacterial effector

Plants deploy intracellular receptors to counteract pathogen effectors that suppress cell-surface receptor-mediated immunity. To what extent pathogens manipulate also immunity mediated by intracellular receptors, and how plants tackle such manipulation, remains unknown. Arabidopsis thaliana encodes three very similar ADR1 class helper NLRs (ADR1, ADR1-L1 and ADR1-L2), which play key roles in plant immunity initiated by intracellular receptors. Here, we report that Pseudomonas syringae AvrPtoB, an effector with E3 ligase activity, can suppress ADR1-L1- and ADR1-L2-mediated cell death. ADR1, however, evades such suppression by diversification of two ubiquitination sites targeted by AvrPtoB. The intracellular sensor NLR SNC1 interacts with and guards the CCR domains of ADR1-L1 and ADR-L2. Removal of ADR1-L1 and ADR1-L2 or delivery of AvrPtoB activates SNC1, which then signals through ADR1 to trigger immunity. Our work not only uncovers the long sought-after physiological function of SNC1 in pathogen defense, but also that reveals how plants can use dual strategies, sequence diversification and a multiple layered guard-guardee system, to counteract pathogen attack on core immunity functions.

A dual-subcellular localized β-glucosidase confers pathogen and insect resistance without a yield penalty in maize

Maize is one of the most important crops for food, cattle feed and energy production. However, maize is frequently attacked by various pathogens and pests, which pose a significant threat to maize yield and quality. Identification of quantitative trait loci and genes for resistance to pests will provide the basis for resistance breeding in maize. Here, a β-glucosidase ZmBGLU17 was identified as a resistance gene against Pythium aphanidermatum, one of the causal agents of corn stalk rot, by genome-wide association analysis. Genetic analysis showed that both structural variations at the promoter and a single nucleotide polymorphism at the fifth intron distinguish the two ZmBGLU17 alleles. The causative polymorphism near the GT-AG splice site activates cryptic alternative splicing and intron retention of ZmBGLU17 mRNA, leading to the downregulation of functional ZmBGLU17 transcripts. ZmBGLU17 localizes in both the extracellular matrix and vacuole and contribute to the accumulation of two defense metabolites lignin and DIMBOA. Silencing of ZmBGLU17 reduces maize resistance against P. aphanidermatum, while overexpression significantly enhances resistance of maize against both the oomycete pathogen P. aphanidermatum and the Asian corn borer Ostrinia furnacalis. Notably, ZmBGLU17 overexpression lines exhibited normal growth and yield phenotype in the field. Taken together, our findings reveal that the apoplastic and vacuolar localized ZmBGLU17 confers resistance to both pathogens and insect pests in maize without a yield penalty, by fine-tuning the accumulation of lignin and DIMBOA.

访问量:1394