联系我们
意见反馈

关注公众号

获得最新科研资讯

瑕瑜研究组-自由基生物质谱

简介

分享到
实验室简介

Welcome

Our research program aims broadly at developing new mass spectrometry (MS) methods for bio-analysis. Research efforts are currently focused on utilizing radical reactions as a unique approach to providing the high level of structural information of proteins and lipids, such as disulfide linkage pattern and carbon-carbon double bond location. We are also developing new MS instrumentation to investigate the radical attack on biomolecules in the gas phase and characterizing a series of peptide or protein radicals which are of biological importance. 

选择性富集结合多层级结构分析策略揭示中性鞘糖脂组的多样性

中性鞘糖脂是一种重要的两亲性脂质分子,其在细胞膜运输和信号传导过程中发挥作用。此外,中性鞘糖脂分子水平上的变化与多种神经疾病、代谢紊乱和癌症相关。由于鞘糖脂丰度低、离子化效率低、结构复杂,已有的分析方法对中性鞘糖脂组的鉴定覆盖率一般低于20%。近期清华大学化学系瑕瑜课题组开发了一种选择性富集结合多层级结构分析的策略,实现了脑组织中浓度跨越4个数量级,超过300个中性鞘糖脂分子的深度结构分析,远超已有的文献报道。此方法进一步揭示了胶质瘤组织中鞘糖脂代谢异常,并实现IDH突变型、野生型胶质瘤组织及正常脑组织的准确分型。相关工作“Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels” 发表在《Nature Communications》上。该文的第一作者是清华大学化学系2020级博士生王紫丹,合作者为清华大学精密仪器系博士生张东晖、吴俊函及张文鹏助理教授,通讯作者为瑕瑜教授。该课题得到了国家自然科学基金(No. 22225404 和 22227807)以及国家重点研发计划(2018YFA0800903 和 2022YFC2406701)的支持。感谢复旦大学华山医院的花玮教授提供人脑组织样本。

图1. a.鞘糖脂的结构; b. 选择性富集流程; c. 利用TiO2 MNPs对猪脑极性脂质提取物的选择性富集。

鞘糖脂的结构包括中性糖环头基、鞘氨醇和酰基链三部分(图1a)。鞘糖脂的结构多样性来源于其合成过程中多种酶的参与,其中包括鞘糖脂中糖环个数以及糖环修饰的变化,鞘氨醇和酰基链的链长、不饱和度、羟基位置和双键位置等精细结构的变化。鞘糖脂的糖环结构在广泛的pH(1.5-14)范围内能够与TiO2中的Ti(IV)活性位点稳定配位,而磷脂中的磷酸官能团仅在中性到弱酸性环境下与Ti(IV)配位(图1b)。据此,作者设计了一套鞘糖脂的选择性富集流程。 使用该方法,猪脑极性脂质中99%的磷脂可被去除 (图1c),鞘糖脂回收率高于75%,最终实现30倍富集效率。

作者进一步采用2-乙酰吡啶作为带电荷标签的PB试剂,对鞘糖脂的双键结构进行衍生。除了提高分析灵敏度,PB-MS/MS可实现鞘糖脂中双键位置和2-OH修饰的同步鉴定以及双键位置异构体的相对含量(图2)。

图2. PB-MS/MS鉴定鞘糖脂的双键位置和-OH位置

整合以上分析流程,作者绘制了猪脑中性鞘糖脂的结构图谱(图3),涵盖头基、脂链总组成、鞘氨醇结构、酰基链结构、双键和羟基位置的5个结构层级。数据揭示了多种未被报道的中性鞘糖脂,包括多不饱和鞘糖脂(2-5 个不饱和度)、含奇数鞘氨醇/酰基链的鞘糖脂(C17, C19)、超长链(C30, C28)和短链(C16)结构的鞘糖脂、及双键结构位置异构体(n-7, n-8, n-9, n-10)。

图3. 猪脑中的中性鞘糖脂结构图谱

鞘糖脂在神经系统中显著富集,参与构成髓鞘结构,保护神经元以维持信号传导。胶质瘤占恶性脑部肿瘤发病率的80%,包括IDH基因突变型和野生型。野生型胶质瘤通常为恶性胶质母细胞瘤,且未发现有效的分子疾病标志物。作者展开了鞘糖脂在胶质瘤组织中的多层级结构定性定量分析,包括6例正常人脑组织、8例IDH突变型人肿瘤组织、8例IDH野生型人肿瘤组织。作者发现,鞘糖脂的总组成定量受到组织样本状态、个体性差异等多种干扰,同组样本间鞘糖脂RSD高达30%-160%(图4a)。而基于鞘糖脂异构体的相对定量则显著降低了同组样本间的差异(0.1%-69%),有效地提高了差异性脂质的发现。

图4. a. 对比22个脑组织样本中鞘糖脂相对含量及基于多结构层级的鞘糖脂异构体相对定量RSDs; b. 基于鞘糖脂结构的相对定量对三类组织样本分型:IDH突变胶质瘤组织,IDH野生型胶质瘤组织,正常脑组织.

通过使用鞘糖脂的链长、鞘氨醇的种类、2OH结构和双键位置异构体等精细结构的相对定量数据,作者成功区分了三种组织的类型(图4b),并发现了神经酰胺合成酶(CerS2)、脂肪酸二羟化酶(FA2H)在人胶质瘤组织中的显著下调。总的来说,此工作为研究中性鞘糖脂代谢及相关疾病标志物的发现提供了有效的分析方法。

 

 

本文编辑:王紫丹

本文审核:乔利鹏,瑕瑜

原文链接:https://doi.org/10.1038/s41467-024-50014-8

Paternò-Büchi衍生化与串联质谱联用深度分析缩醛磷脂

近期,清华大学化学系瑕瑜教授课题组在Analytical and Bioanalytical Chemistry杂志上发表了题为 “Deep profiling of plasmalogens by coupling the Paternò–Büchi derivatization with tandem mass spectrometry” 的文章。论文第一作者为清华大学化学系2021级博士生王祎纯,通讯作者为瑕瑜教授。在该研究中,作者通过结合离线Paternò-Büchi反应与液相色谱-串联质谱,开发了一套灵敏的工作流程,用于深度分析生物样品中的缩醛磷脂。

缩醛磷脂(Plasmalogens)是甘油磷脂(Glycerophospholipids, GPs)的一个特殊亚类,在甘油主链的sn-1位置含有乙烯醚键(-C=C-O-),在sn-2位置富含多不饱和脂肪酰基。缩醛磷脂参与炎症信号转导,与神经退行性疾病、癌症等多种疾病有关。质谱是脂质组学研究的有利工具,然而,复杂生物样品中往往存在多种同分异构体及同重素,对缩醛磷脂的质谱分析造成了干扰。目前基于二级碰撞诱导解离(Collision Induced Dissociation, CID)的方法仅可区分互为同分异构体的PE-P与PE-O,但难以区分PC-P和PC-O。

另外,已有技术对缩醛磷脂C=C双键水平上的鉴定灵敏度不足。臭氧诱导解离(OzID),紫外光解(UVPD)以及有机物离子的电子冲击激发(EIEIO)等技术仅从生物样品中鉴定<20个缩醛磷脂。而使用丙酮作为PB试剂的Paternò-Büchi反应结合串联质谱技术(PB-MS/MS)因存在较高程度的副反应,导致灵敏度不理想(100 nM),需要进行二次衍生化以提高检测限。此外,目前也缺乏一个完整的PB-MS/MS工作流程可以同时实现PE-P和PC-P的分析。针对以上存在的分析挑战,作者开发一套简单、灵敏的工作流程,可以从复杂样品中深度分析PC-P和PE-P。

首先,作者使用标准品PE P-18:0/18:1(Δ9Z)和 PC P-18:0/18:1(Δ9Z),筛选了一系列PB试剂并仔细优化了PB反应条件。作者使用两个参数来评价PB试剂的性能:PB产率和C=C诊断离子相对丰度,其中PB产率指的是反应后PB产物的提取离子色谱(EIC)与紫外线照射前脂质的提取离子色谱(EIC)比例,C=C诊断离子相对丰度指C=C位置相关诊断离子总丰度归一到PB-MS2 CID中片段离子的总丰度的比例。实验结果表明:triFAP表现出最佳的性能。triFAP-MS2 CID测定PE P-18:0/18:1(Δ9Z) 检测限为20 nM,比使用丙酮-PB-MS/MS低5倍,且测定PC P-18:0/18:1(Δ9Z)(10 nM)的检测限也优于丙酮(15 nM)。综上所述,triFAP比丙酮更适合缩醛磷脂的鉴定。

随后,作者建立了使用triFAP作为PB试剂的PB-HILIC-MS/MS工作流程,用于分析复杂生物样品中的缩醛磷脂(图1)。首先使用Folch方法提取复杂样品的全脂,通过HILIC-+‘ve MS1 在总组成水平上鉴定出PE-O和PC-O并进行相对定量,再通过PB-HILIC-+‘ve MS2 CID在链组成水平和C=C双键水平上定性定量PE-P和PC-P异构体。

图1 从复杂生物样品中深度分析缩醛磷脂的工作流程

通过此工作流程,作者成功在牛心脏全脂中鉴定出73种PE-P 和31种PC-P,并实现了链组成水平和C=C双键水平上的相对定量。

图2 牛心脏中缩醛磷脂链组成异构体(b)和C=C双键异构体(c)相对定量

作者进一步对胶质瘤(N=6)和正常(N=6)人脑组织的缩醛磷脂进行了深度分析。实验表明,相对于正常人脑组织样本,胶质瘤样本中PE P-34:1、PE P-36:1和PE P-36:2中n-10异构体含量显著增加。此外,基于14组表现出显著变化的异构体,成功实现了对胶质瘤组和正常组的聚类,这在总组成水平上是无法实现的。

图3 胶质瘤与正常人脑样品中缩醛磷脂的分析

综上所述,作者开发了一套灵敏的工作流程,通过将离线triFAP衍生化与HILIC-MS/MS相结合,在链组成和C=C位置异构体水平上深度分析缩醛磷脂。使用该方法从牛心脏脂质中鉴定了73个PE-P和31个PC-P。对人类胶质瘤和正常脑组织样本的分析显示,胶质瘤组织样本中PE-P的n-10 C=C异构体升高。这些发现表明,此工作流程在研究临床样品中缩醛磷脂的代谢变化方面具有潜力。

最后感谢国家自然科学基金委(No. 22225404)、国家科技部重点研发计划(2018YFA0800903)提供的经费支持。

本文编辑:王祎纯 

本文审核:瑕瑜

原文链接:https://doi.org/10.1007/s00216-024-05376-9

光催化Paternò-Büchi反应与离子淌度-质谱联用对皮脂进行鸟枪法分析

清华大学化学系瑕瑜教授课题组于近期在Analytical Chemistry杂志上发表了题为“Shotgun Lipidomic Profiling of Sebum Lipids via Photocatalyzed Paternò-Büchi Reaction and Ion Mobility-Mass Spectrometry” 的论文,第一作者是博士生施恒学。此研究中,该团队开发了一种基于离子淌度-质谱、Paternò-Büchi反应-MS/MS (PB-MS/MS)的鸟枪法分析流程,实现了对皮脂组超过900种脂质C=C异构体的快速及灵敏分析。

皮脂是皮脂腺的分泌物,构成皮肤的保护层和保湿层。皮脂的无创获取方法及其反映远端器官病理变化的潜力,使其成为理想的生物样本。皮脂由非极性脂质组成,主要包含蜡酯(WE)、脂肪酸(FA)、甘油三酯(TG)、甘油二酯(DG)、胆固醇酯(CE)及角鲨烯(SQ)。非极性脂质的电离效率低,且其同分异构体和同重素的多样性为皮脂组的分析带来了挑战。本研究旨在通过发展高效率电荷标签PB衍生反应,结合电喷雾电离-离子淌度-串联质谱实现对皮脂组在精细结构层级上的定性定量。

首先,研究者们使用电荷标签PB试剂ethyl 2-oxo-2-(pyridine-3-yl)acetate (EP)和光催化剂米氏酮对脂质C=C的PB反应进行评估(图1)。以单不饱和蜡酯WE 18:0/18:1(Δ9)(见图2)为例,其经电荷标签PB反应后,离子化效率可提升约1000倍。PB产物的MS2 CID产生了指向n-端C=C位置的诊断离子,进一步的pseudo-MS3 CID分析能够识别Δ-端位置,从而实现WE中FA链上C=C位置的特异性鉴定。研究者们还对WE 18:1(Δ9)/18:0进行了PB-MS/MS分析。无论C=C双键是位于FA链还是FOH链,PB-MS/MS均能实现链特异性的C=C位置鉴定。此外,研究者还对SQ的C=C进行了PB-MS1和PB-MS2 CID分析,成功鉴定了SQ中各个C=C双键的位置。

图1 皮脂的PB-MS/MS分析流程和碎裂模式

图2 蜡酯WE 18:0/18:1(Δ9)的PB-MS/MS分析

在鸟枪法分析皮脂时,研究者们采用高分辨率环形离子淌度谱(cyclic IMS)对来自含多一个不饱和度脂质的同位素峰( [M+2 Da])进行分离。研究表明,经过10圈cyclic IMS分离(分辨率约260),WE 36:2/WE 36:1 (5:1)的PB产物中,[M+2 Da]干扰由60 %显著降至4 %。此方法相较于反相色谱法(干扰6 %),干扰更少,分离速度也更快(< 250 ms vs. 30 min)。

基于以上,研究者开发了皮脂的分析工作流程(见图3)。首先,他们通过RPLC-APCI-MS定性定量蜡酯的总组成,随后采用结合离子淌度-质谱、PB-MS/MS的鸟枪法分析流程对皮脂进行C=C结构层次的分析。cyclic IMS实现了PB反应后的皮脂中不同脂质亚类、脂质链长不同和不饱和度差异以及同重素干扰的分离。此外,cyclic IMS还可以提升PB-MS/MS对脂质C=C异构体的鉴定能力。以皮脂中的WE 36:1为例,PB-MS/MS产生的C=C诊断离子经过一圈的cyclic IMS分离,其淌度到达时间与C=C位置(m/z)呈现线性关系。研究者们沿着该线性关系的趋势,可发现2个相对丰度低于0.3%的诊断离子。这一发现表明,在即便缺少脂质C=C位置异构体标准品的情况下,基于PB-MS/MS诊断离子的IMS到达时间的线性关系,可以提高对低丰度C=C位置异构体的鉴定能力。

图3 皮脂的分析工作流程

PB-MS/MS显著拓展了对皮脂样本中脂质的丰富性的认知。以WE 36:1为例,研究者们实现了对其含有的31种C=C异构体的定性和定量分析(图4a)。进而,针对WE总碳数为C28至C42,研究者们实现了链特异性C=C位置异构体的定量分析(图4b),共计600个的C=C异构体。

图4 皮脂中WE链特异性C=C异构体定性定量分析

综上,研究者们结合PB-MS/MS和离子淌度-质谱法,开发了对皮脂组WE、TG、DG和CE的C=C位置异构体的鸟枪法快速分析流程,实现了共计超过900个C=C异构体的定性定量分析。

 

本文编辑:施恒学 

本文审核:瑕瑜

原文链接:https://doi.org/10.1021/acs.analchem.4c00141

 

1. Gas-phase radical ion chemistry

Radical ions, which consist of unpaired electrons, offer distinct gas-phase ion chemistry as compared to the even-electron species. Radical chemistry can be utilized to tackle challenging problems, such as differentiating isomeric structures, which would otherwise not be solved by traditional MS analysis of even-electron ions of the biomolecules. We are developing MS instrumentation and methods to facilitate radical reactions for either in the vacuum or in ambient air.

1. Radical reactions at the interface of ESI-MS.

Radicals or excited neutrals are generated via air discharge or UV photolysis and subsequently reacted with ions entrained in the ESI plume.  Radical reactions are subsequently monitored and characterized in situ by MS analysis. Reactions of peptides and lipids with various radical species have been investigated, including •OH, •CH2OH, excited state of (CH3)2CO.  Novel analytical applications based on these reactions have been developed.

AC; 2010, 82, 2856JASMS., 2011, 22, 922Analyst, 2013, 138, 2840;JASMS, 2014, 25, 1192.

 

2. Ion/radical reactions in a linear ion trap mass spectrometer.

A first linear ion trap mass spectrometer capable of studying reactions between the mass-selected ions and radicals has been recently developed and tested in collaboration with Prof. Zheng Ouyang from Biomedical Engineering at Purdue. This instrument uses a rectilinear ion trap as the mass analyzer and gas-phase reactor, an ESI as the source of the bimolecular ions, a pulsed pyrolysis valve for the generating an intense radical beam, and a glow discharge electron impact (GDEI) source for radical characterization. This MS platform can facilitate mechanistic studies on the radical attack to biomolecules that are of biological significance

 

3. Chemistry of bio-radical ions.

Through radical relations at ESI-MS interface, our group has synthesized and studied cysteine sulfinyl radical in the gas phase (Cys-SO•), which has a wide relevance to radical-induced oxidation of proteins, however, has been poorly characterized due to its transient nature in the condensed phases. Different from carbon-centered radicals, we have discovered that sulfinyl radical has a dual property of being acting as a base or a radical via combined experimental and theoretical approaches. The base property allows the formation of proton bridging between the radical site and the neighboring amino acid residues and thus contributes to the overall structural and chemical property of a polypeptide.

Love et al. J. Am. Chem. Soc., 2013, 135, 6226

Tan et al. J Phys. Chem. A, 2014, 118 ,11828

 

We also systematically investigated the inter- and intra-molecular reactivity of the sulfinyl radicals. They showed that the cysteine sulfinyl radical can react with a disulfide bond or a thiol group within a peptide, which has implications to radical-induced disulfide bond scrambling.

Using functionalized sulfinyl radical as a precursor of glycyl-type radical, we have also developed an experimental approach based on tandem mass spectrometry to correlate the electronic property of the connecting groups to the stability of glycyl-type radical species (Angew. Chem., Int. Ed., 2014, 53, 1887-1890, featured as the front cover and the “hot article”).

Tan et al. Angew. Chem. Int. Ed. 2014, 53, 1887

4. Application of radical chemistry for bio-analysis Analysis of unsaturated lipids:

Facile determination of C=C bond locations of lipids is a long-standing challenge for lipid analysis using MS. Intact lipid analysis via conventional low energy collisional activation tandem mass spectrometry does not provide information for the C=C location because much higher energies are required for cleaving C-C or C=C bonds and thus no fragments specific to the C=C locations can be produced. Utilizing the high reactivity of C=C with radicals or electrophilic excited state molecules, our group has recently developed coupling Paternò–Büchi (PB) reaction with MS/MS for highly confident C=C bond location determination in lipids (Angew. Chem., Int. Ed, 2014, 53, 2592-2596). This PB-MS/MS strategy is currently being developed for unsaturated lipid C=C location isomer characterization and quantitation of biological samples (tissue, cell lines, plasma), application to shotgun and separation based lipidomics, biomarker discovery, and bio-imaging.

Ma and Xia, Angew. Chem. Int. Ed. 2014, 53, 2592

 

2. PB-MS/MS developed by our group

42. Tian Xia, Xue Jin, Donghui Zhang, Jitong Wang, Ruijun Jian, Hang Yin, Yu Xia*, "Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7 cell line", J. Lipid. Res. 2023.

https://doi.org/10.1016/j.jlr.2023.100410

41.  Qiaohong Lin, Ruijun Jian, Shengzhuo Wang, Yu Xia*, "Characterization of Oxidized Glycerophosphoethanolamines via Radical-Directed Dissociation Tandem Mass Spectrometry and the Paternò–Büchi Derivatization", Anal. Chem. 2023, 95, 25, 9422–9427.

https://doi.org/10.1021/acs.analchem.3c00792

40.  Tian Xia, Feng Zhou, Donghui Zhang, Xue Jin, Hengxue Shi, Hang Yin, Yanqing Gong, Yu Xia*, "Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry", Nat. Commun., 202314, 4263.

https://doi.org/10.1038/s41467-023-40046-x

39.  Hengxue Shi, Zhenshu Tan, Xiangyu Guo, Hanlin Ren, Shengzhuo Wang, Yu Xia*, "Visible-Light Paternò–Büchi Reaction for Lipidomic Profiling at Detailed Structure Levels", Anal. Chem. 2023, 95, 11, 5117–5125.

https://doi.org/10.1021/acs.analchem.3c00085

38.  Wenpeng Zhang, Ruijun Jian, Jing Zhao, Yikun Liu, Yu Xia*, "Deep-lipidotyping by mass spectrometry: recent technical advances and applications", Journal of Lipid Research, 2022.

https://doi.org/10.1016/j.jlr.2022.100219

37.  Donghui Zhang, Qiaohong Lin, Tian Xia, Jing Zhao, Wenpeng Zhang, Zheng Ouyang* and Yu Xia*, "LipidOA: A Machine-Learning and Prior-Knowledge-Based Tool for Structural Annotation of Glycerophospholipids", Anal. Chem. 2022, 94, 48, 16759–16767.

https://doi.org/10.1021/acs.analchem.2c03505

36. Hai-Fang Li, Jing Zhao, Wenbo Cao, Wenpeng Zhang, Yu Xia*, and Zheng Ouyang*, “Site-Specific Photochemical Reaction for Improved C=C Location Analysis of Unsaturated Lipids by Ultraviolet Photodissociation” Research, 2022, Article ID 9783602, Published: 12 Feb 2022

https://doi.org/10.34133/2022/9783602

35. Xiaoxiao Ma, Wenpeng Zhang, Zishuai Li, Yu Xia* and Zheng Ouyang*, Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry. Acc. Chem. Res. 2021, 54, 20, 3873–3882.

https://doi.org/10.1021/acs.accounts.1c00419

34. Zishuai Li, Simin Cheng, Qiaohong Lin, Wenbo Cao, Jing Yang, Minmin Zhang, Aijun Shen, Wenpeng Zhang, Yu Xia, Xiaoxiao Ma* and Zheng Ouyang*, "Single-cell lipidomics with high structural specificity by mass spectrometry" Nature Communications, 2021, 12, 2869.

https://doi.org/10.1038/s41467-021-23161-5

33. Qiaohong Lin, Pengyun Li, Mengxuan Fang, Donghui Zhang, and Yu Xia*, “Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines” Anal. Chem. 2021, Publication Date:December 21

https://doi.org/10.1021/acs.analchem.1c03494

32. Jing Zhao, Mengxuan Fang, Yu Xia*, “A Liquid Chromatography-Mass Spectrometry Workflow for In-Depth Quantitation of Fatty Acid Double Bond Location Isomers”J. Lipid. Res. 2021, Available online 24 August .

https://doi.org/10.1016/j.jlr.2021.100110

31. Qingyuan Hu, Yu Xia*, Xiaoxiao Ma*, “Comprehensive Structural Characterization of Lipids by Coupling Paternò–Büchi Reaction and Tandem Mass Spectrometry”, In: Hsu FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY.

https://doi.org/10.1007/978-1-0716-1410-5_4

30. Tian Xia, Ming Yuan, Yongwei Xu, Feng Zhou, Kate Yu*, and Yu Xia*, “Deep Structural Annotation of Glycerolipids by the Charge-Tagging Paterno–Büchi Reaction and Supercritical Fluid Chromatography–Ion Mobility Mass Spectrometry", Anal. Chem. 2021, 93, 23, 8345–8353

https://pubs.acs.org/doi/10.1021/acs.analchem.1c01379

29. Hanlin Ren, Alexander Triebl, Sneha Muralidharan, Markus R. Wenk*, Yu Xia* and Federico Torta*, "Mapping the Distribution of Double Bond Location Isomers in Lipids across Mouse Tissues", Analyst, 2021,146, 3899-3907

https://doi.org/10.1039/D1AN00449B

28. X. Ma, Y. Xia, "Unsaturated Lipid Analysis via Coupling the Paternò–Büchi Reaction with ESI-MS/MS", Lipidomics. 2020: 148-174.

27. Xue Zhao, Gang Wu, Wenpeng Zhang, Mengqiu Dong, and Yu Xia*, "Resolving Modifications on Sphingoid Base and N-Acyl Chain of Sphingomyelin Lipids in Complex Lipid Extracts", Anal. Chem. 2020, 92, 21, 14775–14782

https://doi.org/10.1021/acs.analchem.0c03502

26. Jing Zhao, Xiaobo Xie, Qiaohong Lin, Xiaoxiao Ma, Pei Su, Yu Xia*, "Next-Generation Paternò–Büchi Reagents for Lipid Analysis by Mass Spectrometry", Anal. Chem. 2020, 92, 19, 13470–13477

https://pubs.acs.org/doi/10.1021/acs.analchem.0c02896

25. Elissia T. Franklin, Yu Xia*, "Structural elucidation of triacylglycerol using online acetone Paternò–Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry" , Analyst. 2020, 145, 6532-6540.

https://doi.org/10.1039/D0AN01353F

24. Elissia Franklin, Samuel Shields, Jeffrey Manthorpe, Jeffrey C. Smith, Yu Xia, Scott A. Mcluckey*, "Coupling Headgroup and Alkene Specific Solution Modifications with Gas-Phase Ion/Ion Reactions for Sensitive Glycerophospholipid Identification and Characterization", J. Am. Soc. Mass Spectrom. 2020, 31, 4, 938–945.

https://doi.org/10.1021/jasms.0c00001

23. Wenpeng Zhang*, Bing Shang, Zheng Ouyang, Yu Xia*, "Enhanced Phospholipid Isomer Analysis by Online Photochemical Derivatization and RPLC-MS", Anal. Chem. 2020, 92, 9, 6719–6726.

https://doi.org/10.1021/acs.analchem.0c00690

22. Tian Xia, Hanlin Ren, Wenpeng Zhang, Yu Xia*, "Lipidome-Wide Characterization of Phosphatidylinositols and Phosphatidylglycerols on C=C Location Level", Analytica Chimica Acta, 2020, 1128, 107-115.

http://dx.doi.org/10.1016/j.aca.2020.06.017

21. Wenbo Cao, Simin Cheng, Jing Yang, Wenpeng Zhang, Zishuai Li, Qinhua Chen, Yu Xia, Zheng Ouyang*, Xiaoxiao Ma*, "Large-scale lipid analysis with C=C location and sn-position isomer resolving power", Nat Commun, 2020, 11, 375.

https://www.nature.com/articles/s41467-019-14180-4

20. 马潇潇,胡清源,瑕瑜*, "Paternò-Büchi(PB)反应与串联质谱结合实现不饱和脂质精确结构解析", 分析测试学报, 2020, 39(1), 19-27.

http://new.fxcsxb.com/fxcsxb/ch/reader/view_abstract.aspx?file_no=20200103&flag=1

19. Xiaobo Xie, Jing Zhao, Miao Lin, Jinlan Zhang, Yu Xia*, "Profiling of Cholesteryl Esters by Coupling Charge Tagging Paternò-Büchi Reaction and Liquid Chromatography-Mass Spectrometry", Anal. Chem. 2020, 92, 12, 8487–8496.

https://doi.org/10.1021/acs.analchem.0c01241

18. Haifang Li, Wenbo Cao, Xiaoxiao Ma, Xiaobo Xie, Yu Xia, Zheng Ouyang*, "Visible-Light-Driven [2 + 2] Photocycloadditions between Benzophenone and C=C Bonds in Unsaturated Lipids", J. Am. Chem. Soc. 2020, 142, 7, 3499–3505.

https://doi.org/10.1021/jacs.9b12120

17. Wenpeng Zhang, Bing Shang, Yu Xia, "Comprehensive Characterization of Phospholipid Isomers in Human Platelets", J. Anal. Test., 2020, 4, 210–216.

https://link.springer.com/article/10.1007/s41664-020-00137-w

16. Q. Lin, D. Zhang, Y. Xia*, "Analysis of Ether Glycerophosphocholines at the Level of C=C Locations from Human Plasma", Analyst, 2020, 145, 513-522.

https://doi.org/10.1039/C9AN01515A

15. X. Zhao, W. Zhang, D. Zhang, X. Liu, W. Cao, Q. Chen, Z. Ouyang, Y. Xia*, "A Lipidomic Workflow Capable of Resolving sn- and C=C Location Isomers of Phosphatidylcholines", Chem. Science, 2019, 10, 10740-10748.

https://doi.org/10.1039/C9SC03521D

14. Y. Su, J. Page, X. Ma, R. Shi, Y. Xia*, Zheng Ouyang*, "Mapping Lipid C=C Location Isomers in Organ Tissues by Coupling Photochemical Derivatization and Rapid Extractive Mass Spectrometry", Int. J. Mass Spectrom. 2019, 445, 116206

https://doi.org/10.1016/j.ijms.2019.116206

13. Elissia T. Franklin, Stella K. Betancourt, Caitlin E. Randolph, Scott A. McLuckey* , and Yu Xia* ,"In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry",  Anal Bioanal Chem. 2019, 411, 4739–4749.

https://doi.org/10.1007/s00216-018-1537-1

12. R. Zou, W. Cao, L. Chong, W. Hua, H. Xu, Y. Mao, J. Page, R. Shi, Y. Xia, Tony Y. Hu, W. Zhang*, and Z. Ouyang*, "Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer", Anal. Chem. 2019, 91, 1, 1157–1163

https://doi.org/10.1021/acs.analchem.8b04935

11. X. Xie, Y. Xia*, "Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry", Anal. Chem. 2019, 91, 7173-7180.

https://doi.org/10.1021/acs.analchem.9b00374

10. W. Zhang, S. Chiang, Z. Li, Q. Chen, Y. Xia, Z. Ouyang*, "A Polymer Coating Transfer Enrichment for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples", Angew. Chem., Int. Ed., 2019, 58, 6064-6069.

https://doi.org/10.1002/anie.201900011

9. W. Zhang, D. Zhang, Q. Chen, J. Wu, Z. Ouyang*, Y. Xia*, "Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers", Nat. Commun., 2019, 10, 79.

https://www.nature.com/articles/s41467-018-07963-8

8. L. Chong, R. Tian, R. Shi, Z. Ouyang*, and Y. Xia*, "Coupling the Paternò-Büchi (PB) Reaction With Mass Spectrometry to Study Unsaturated Fatty Acids in Mouse Model of Multiple Sclerosis", Front. Chem. 2019, 7:807.

https://doi.org/10.3389/fchem.2019.00807

7. F. Tang*, C. Guo, X. Ma, J. Zhang, Y. Su, R. Tian, R. Shi, Y. Xia, X. Wang, Z. Ouyang*, "Rapid in situ Profiling of Lipid C=C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions", Anal. Chem. 2018, 90, 5612-5619

https://doi.org/10.1021/acs.analchem.7b04675

6. J. Li, S. Condello, J. T. Pepin, X. Ma, Y. Xia, T. D. Hurley, D. Matei*, and J. Cheng*, “Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells”, Cell Stem Cell, 2017, 20, 3, 301-314

https://doi.org/10.1016/j.stem.2016.11.004

5. J. Ren, E.T. Franklin, Y. Xia*, "Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry", J. Am. Soc. Mass Spectrom. 2017, 28, 1432-1441

https://doi.org/10.1021/jasms.8b05584

4. X. Ma, X. Zhao, J. Li, W. Zhang, J.-X. Cheng, Z. Ouyang*, Y. Xia*, "Photochemical Tagging for Quantitation of Unsaturated Fatty Acids by Mass Spectrometry", Anal. Chem. 2016, 88, 8931–8935

https://doi.org/10.1021/acs.analchem.6b02834

3. C. A. Stinson, Y. Xia*, "A Method of coupling Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating C=C bond in glycerophospholipids", Analyst, 2016, 141, 3696-3704

https://doi.org/10.1039/C6AN00015K

2. X. Ma, L. Chong, R. Tian, R. Shi, T. Y. Hu, Z. Ouyang*, Y. Xia*, "Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction", Proc. Natl. Acad. Sci. USA, 2016, 113, 2573-2578. Featured by C&E News and Nature Methods

https://doi.org/10.1073/pnas.1523356113

1. X. Ma and Y. Xia*, "Pinpointing Double Bonds in Lipids by Paternò–Büchi Reactions and Mass Spectrometry", Angew. Chem., Int. Ed, 2014, 53, 2592-2596.

https://doi.org/10.1002/anie.201310699

3. Advances of PB-MS/MS by other research groups around the world.(2017-2023)

53. Wang Z.; Garza S.; Li X.; Rahman M. S.; Brenna J. T.*; Wang D. H.^; Paternò–Büchi Reaction Mass Spectrometry Enables Positional Assignment of Polymethylene-Interrupted Double Bonds in Food-Derived Lipids. J. Agric. Food Chem. 2024.

https://doi.org/10.1021/acs.jafc.3c06366

52. Chen M.; Wang R.; Ren Q. X.; Li B.; Li P.*; Yang H.*; Gao W.*; Analysis of unsaturated fatty acids by supercritical fluid chromatography tandem mass spectrometry coupled with online Paternò-Büchi reaction. Microchemical Journal. 2023, 109551.

https://doi.org/10.1016/j.microc.2023.109551

51. Guo X. Y.; Cao W. B.; Fan X. M.; Guo Z. Y.; Zhang D. H.; Zhang H. Y.; Ma X. X.; Dong J. H.; Wang Y. F. *; Zhang W. P. *; Ouyang Z.*; Tandem Mass Spectrometry Imaging Enables High Definition for Mapping Lipids in Tissues. Angew Chem Int Ed Engl. 2023, 62, 9, e202214804

https://doi.org/10.1002/anie.202214804

50. Cheng S. M.; Xie Z. N.; Hu Q. Y.; Qian Y.; Ma X. X.*; Familiarizing Undergraduate Students with Advanced Mass Spectrometry Techniques: An Example of Detailed Lipid Structure Characterization. J. Chem. Educ. 2023, 100, 3, 1270–1276.

https://doi.org/10.1021/acs.jchemed.2c00824

49. Cheng S. M.; Zhang D. H.; Feng J. X.; Hu Q. Y.; Tan A.; Xie Z. N.; Chen Q. H.; Huang H. M.; Wei Y.; Ouyang Z.*; Ma X. X.*; Metabolic Pathway of Monounsaturated Lipids Revealed by In-Depth Structural Lipidomics by Mass Spectrometry. Research, 2023, 6, 0087.

https://doi.org/10.34133/research.0087

48. Hu W. Y.; Han Y. H.*; Selective Characterization of Olefins by Paternò–Büchi Reaction with Ultrahigh Resolution Mass Spectrometry. Anal. Chem. 2023.

https://doi.org/10.1021/acs.analchem.3c02966

47. Freitas D. P.; Yan X.*; In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA. Analytical and Bioanalytical Chemistry 2023, 415, 4197–4208.

https://doi.org/10.1007/s00216-023-04653-3

46. Lu H. Y.; Zhang H.; Li L. J.*; Chemical tagging mass spectrometry: an approach for single‑cell Omics. Analytical and Bioanalytical Chemistry. 2023.

https://doi.org/10.1007/s00216-023-04850-0

45. Kanter J. P.; Honold P. J.; Luh D.; Heiles S., Spengler B.; Fraatz M. A.; Zorn H.; Hammer A. K.*; Biocatalytic Production of Odor-Active Fatty Aldehydes from Fungal Lipids. J. Agric. Food Chem. 2023, 71, 21, 8112–8120

https://doi.org/10.1021/acs.jafc.3c01972

44. Wang D. H.; Brenna J. T.*, and Shchepinov M. S.*; Quantitative High-Field NMR- and Mass Spectrometry-Based Fatty Acid Sequencing Reveals Internal Structure in Ru-Catalyzed Deuteration of Docosahexaenoic Acid. Anal. Chem. 2022, 94, 38, 12971–12980.

https://doi.org/10.1021/acs.analchem.2c00923

43. Kanter J.P.; Honold P. J.; Lüke D.; Heiles S.; Spengler B.; Fraatz M. A.; Harms C.; Ley J. P.; Zorn H.; Hammer A. K.*; An enzymatic tandem reaction to produce odor-active fatty aldehydes. Appl. Microbiol. Biotechnol. 2022, 106, 6095–6107

https://doi.org/10.1007/s00253-022-12134-3

42. Bednařík A.*; Prysiazhnyi V.; Bezdeková D.; Soltwisch J.; Dreisewerd K.; Preisler J.*; Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal. Chem. 2022, 94, 12, 4889–4900.

https://doi.org/10.1021/acs.analchem.1c05108

41. Bechtella L.; Walrant A.*; Structural Bases for the Involvement of Phosphatidylinositol-4,5-bisphosphate in the Internalization of the Cell-Penetrating Peptide Penetratin. ACS Chem. Biol. 2022, 17, 6, 1427–1439.

https://doi.org/10.1021/acschembio.1c00974

40. Cerrato A.; Capriotti A. L.*; Novel Aza-Paternò-Büchi Reaction Allows Pinpointing Carbon–Carbon Double Bonds in Unsaturated Lipids by Higher Collisional Dissociation. Anal. Chem. 2022, 94, 38, 13117–13125.

https://doi.org/10.1021/acs.analchem.3c02966

39. Christiana M.;Kokotou M. G.*; Liquid Chromatography-Mass Spectrometry (LC-MS) Derivatization-Based Methods for the Determination of Fatty Acids in Biological Samples. Molecules 202227(17), 5717

https://doi.org/10.3390/molecules27175717

38. Sun C. L.*; Wan X.*; A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues. Chinese Chemical Letters 2022, 33, 2073-2076.

https://doi.org/10.1016/j.cclet.2021.08.034

37. Hynds H. M.;Hines K. M.*; Ion Mobility Shift Reagents for Lipid Double Bonds Based on Paternò–Büchi Photoderivatization with Halogenated Acetophenones. J. Am. Soc. Mass Spectrom. 2022, 33, 10, 1982–1989

https://doi.org/10.1021/jasms.2c00211

36. Chen Y. Y.; Xie C. Y.; Wang X. X.; Cao G. D.; Ru. Y.; Song Y. Y.; Iyaswamy A.; Li M.; Wang J. N.*; Cai Z. W.*; 3Acetylpyridine On-Tissue Paterno−Buchi Derivatization Enabling High Coverage Lipid C=C Location-Resolved MS Imaging in Biological Tissues. Analytical Chemistry, 2022.

https://doi.org/10.1021/acs.analchem.2c03089

35. Feng, G. F.; Gao, M.; Wang L.W.; Chen J. Y.; Hou M. L.; Wan Q. Q.; Lin Y.; Xu G. Y.; Qi X. T.; Chen S. M.*; Dual-resolving of positional and geometric isomers of C=C bonds via bifunctional photocycloaddition-photoisomerization reaction system. Nature Communications, 2022, 13, 2652

https://doi.org/10.1038/s41467-022-30249-z

34. Mao, R.; Li, W.; Ji, P.; Ding, H.; Teka, T.; Zhang, L.; Fu, Z.; Fu, X.; Kaushal, S.; Dou, Z.*; Han, L.*; An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. Journal of Chromatography A, 2022, 1675, 463176

https://doi.org/10.1016/j.chroma.2022.463176

33. Sun, J.; Liu, R. X.; Li, S.; Li, W. *; M. L. Gross*; Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nature Communications, 2021, 12, 7270

https://doi.org/10.1038/s41467-021-27588-8

32. Han, Y.; Chen, P.; Li, Z.; Wang, X.; Sun, C. *; Multi-wavelength visible-light induced [2+2] cycloaddition for identification of lipid isomers in biological samples. Journal of Chromatography A, 2022, 1662, 462742

https://doi.org/10.1016/j.chroma.2021.462742

31. Liu, Z.; S. Rochfort*; Regio-distribution and double bond locations of unsaturated fatty acids in phospholipids of bovine milk. Food Chemistry, 2021, Available online 2 November.

https://doi.org/10.1016/j.foodchem.2021.131515

30. Deng, J.; Yang, Y.*; Zeng, Z.; Xiao, X.; Li, J.; Luan, T.*; Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 38, 13089–13098

https://doi.org/10.1021/acs.analchem.1c03249

29. Zhang, J.; Guo, C.; Huo, X.; Ma, X.; Li, X.; Zeper, A.; Chu, Y.; Wang, X.; Tang, F.; Unsaturated lipid isomeric imaging based on the Paternò–Büchi reaction in the solid phase in ambient conditions. Talanta, 2021, 235, 122816.

https://doi.org/10.1016/j.talanta.2021.122816

28. Sun, C; Ma, C; Li, L; Han, Y; Wang, D; Wan,X; "A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues", Chinese Chemical Letters, 2021, Available online 12 August.

https://doi.org/10.1016/j.cclet.2021.08.034

27. Huang, W.; Zhou. H.; Yuan, M.; Lan, L.; Hou, A.; Ji, S. Comprehensive Characterization of the Chemical Constituents in Platycodon Grandiflorum by an Integrated Liquid Chromatography-Mass Spectrometry Strategy. Journal of Chromatography A, 2021, 1654, 462-477.

https://doi.org/10.1016/j.chroma.2021.462477

26. Yang Y. Coupling Paternò-Büchi Reaction with Ambient NanoESI-MS for Identification of Unsaturated Triacylglycerols in Peanut Oils. Journal of Chinese Mass Spectrometry Society, 2021, 42(4): 455-461.

http://www.jcmss.com.cn/EN/10.7538/zpxb.2021.0032

25. Wang, D.; Park, H.; Wang, Z.; Lacombe, R.S.; Shmanai, V.V.; Bekish, A.V.; Schmidt, K.; Shchepinov, M.S.; Brenna, J.T.“Toward Quantitative Sequencing of Deuteration of Unsaturated Hydrocarbon Chains in Fatty Acids" Analytical Chemistry, 2021, 93, 8238–8247

https://doi.org/10.1021/acs.analchem.1c01016

24. Xu, S.; Lv, X.; Wu, B.; Xie, Y.; Wu, Z.; Tu, X.; Chen, H.; Wei, F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. Journal of Agricultural and Food Chemistry, 2021

https://doi.org/10.1021/acs.jafc.0c07268

23. Wäldchen, F.; Mohr, F.; Wagner, A.H.; Heiles, S. "Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C= C position-resolved MS2 imaging." Analytical Chemistry. 2020, 92, 14130–14138

https://doi.org/10.1021/acs.analchem.0c03150

22. Jeck, V.; Froning, M.; Tiso, T.; Blank, L. M.; Hayen, H. "Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy) alkanoic acids by liquid chromatography–mass spectrometry applying online Paternò–Büchi reaction." Analytical and bioanalytical chemistry, 2020, 412, 5601-5613.

https://link.springer.com/article/10.1007/s00216-020-02776-5

21.Maddox, S. W., Olsen, S. S., Velosa, D. C., Burkus-Matesevac, A., Peverati, R., & Chouinard, C. D. Improved Identification of Isomeric Steroids using the Paternò-Büchi Reaction with Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 2086–2092

https://doi.org/10.1021/jasms.0c00215

20. Xu, S.; Wei, F.; Xie, Y.; Wu, B.; Lv, X.; Qin, Z.; Chen, H. Localisation of C=C Bond and Absolute Quantification of Unsaturated Fatty Acids in Vegetable Oils based on Photochemical Derivatisation Reaction Coupled with Mass Spectrometry. International Journal of Food Science & Technology, 2020, 55,  2883-2892

https://doi.org/10.1111/ijfs.14546

19. Li, P.; Deng, J.; Xiao, N.; Cai, X.; Wu, Q.; Lu, Z.; Du, B. "Identification of polyunsaturated triacylglycerols and CC location isomers in sacha inchi oil by photochemical reaction mass spectrometry combined with nuclear magnetic resonance spectroscopy." Food chemistry, 2020, 307, 125568.

https://doi.org/10.1016/j.foodchem.2019.125568

18. Zhu, Y.; Wang, W.; Yang, Z. "Combining Mass Spectrometry with Paternò-Büchi Reaction to Determine Double-bond Positions in Lipids at the Single-cell Level." Analytical Chemistry, 2020, 92, 11380–11387

https://doi.org/10.1021/acs.analchem.0c02245

17. Xu, S.; Wu, B.; Oresic, M.; Xie, Y.; Yao, P.; Wu, Z.; Wei, F. "Double Derivatization Strategy for High-Sensitivity and High-Coverage Localization of Double Bonds in Free Fatty Acids by Mass Spectrometry." Analytical Chemistry, 2020, 92, 6446-6455.

https://doi.org/10.1021/acs.analchem.9b05588

16. Feng, G.; Hao, Y.; Wu, L.; Chen, S. "A visible-light activated [2+ 2] cycloaddition reaction enables pinpointing carbon–carbon double bonds in lipids." Chemical Science, 2020, 11, 7244-7251.

https://doi.org/10.1039/D0SC01149E

15. Esch, P.; Heiles, S. "Investigating C=C Positions and Hydroxylation Sites in Lipids Using Paternò–Büchi Functionalization Mass Spectrometry." Analyst, 2020, 145, 2256-2266.

https://doi.org/10.1039/C9AN02260K

14. Wäldchen, F.; Spengler, B.; Heiles, S. "Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive Paternò–Büchi Matrix for Double-Bond Localization in Isomeric Phospholipids." Journal of the American Chemical Society, 2019, 141, 11816-11820.

https://doi.org/10.1021/jacs.9b05868

13. Deng, J.; Yang, Y.; Liu, Y.; Fang, L.; Lin, L.; Luan, T. "Coupling Paternò-Büchi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for In Vivo and Microscale Profiling of Lipid C═ C Location Isomers in Complex Biological Tissues." Analytical chemistry, 2019, 91, 4592-4599.

https://doi.org/10.1021/acs.analchem.8b05803

12. Esch, P.; Fischer, M.; Heiles, S.; Schäfer, M. "Olefinic Reagents Tested for Peptide Derivatization with Switchable Properties: Stable upon Collision Induced Dissociation and Cleavable by In-Source Paternò-Büchi Reactions." Journal of Mass Spectrometry, 2019, 54, 976-986.

https://doi.org/10.1002/jms.4474

11. Birk, F.; Fraatz, M. A.; Esch, P.; Heiles, S.; Pelzer, R.; Zorn, H. "Industrial Riboflavin Fermentation Broths Represent a Diverse Source of Natural Saturated and Unsaturated Lactones." Journal of Agricultural and Food Chemistry, 2019, 67, 13460-13469.

https://doi.org/10.1021/acs.jafc.9b01154

10. Zhao, X.; Chen, J.; Zhang, W.; Yang, C.; Ma, X.; Zhang, S.; Zhang, X. "Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity." Journal of The American Society for Mass Spectrometry, 2019, 30, 2646-2654.

https://doi.org/10.1021/jasms.8b06287

9. Bednařík, A.; Bölsker, S.; Soltwisch, J.; Dreisewerd, K., "An On-Tissue Paternò–Büchi Reaction for Localization of Carbon–Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption–Ionization Mass-Spectrometry Imaging." Angewandte Chemie International Edition, 2018, 57, 12092-12096.

https://doi.org/10.1002/ange.201806635

8. Jeck, V.; Korf, A.; Vosse, C.; Hayen, H. "Localization of Double-Bond Positions in Lipids by Tandem Mass Spectrometry Succeeding High-Performance Liquid Chromatography with Post-Column Derivatization." Rapid Communications in Mass Spectrometry, 2019, 33, 86-94.

https://doi.org/10.1002/rcm.8262

7. Bechtella, L.; Kirschbaum, C.; Cosset, M.; Clodic, G.; Matheron, L.; Bolbach, G.; Sagan, S.; Walrant, A.; Sachon, E. "Benzophenone Photoreactivity in a Lipid Bilayer To Probe Peptide/Membrane Interactions: Simple System, Complex Information." Analytical Chemistry, 2019, 91, 9102-9110.

https://doi.org/10.1021/acs.analchem.9b01584

6. Korf, A.; Jeck, V.; Schmid, R.; Helmer, P. O.; Hayen, H. "Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package." Analytical Chemistry, 2019, 91, 5098-5105.

https://doi.org/10.1021/acs.analchem.8b05493

5. Xu, T.; Pi, Z.; Song, F.; Liu, S.; Liu, Z. "Benzophenone used as the photochemical reagent for pinpointing C= C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches." Analytica chimica acta, 2018, 1028, 32-44.

https://doi.org/10.1016/j.aca.2018.04.046

4. Esch, P.; Heiles, S. "Charging and Charge Switching of Unsaturated Lipids and Apolar Compounds Using Paternò-Büchi Reactions." Journal of the American Society for Mass Spectrometry, 2018, 29, 1971-1980.

https://doi.org/10.1021/jasms.8b05694

3. Wäldchen, F.; Becher, S.; Esch, P.; Kompauer, M.; Heiles, S. "Selective Phosphatidylcholine Double Bond Fragmentation and Localisation Using Paternò–Büchi Reactions and Ultraviolet Photodissociation." Analyst, 2017, 142, 4744-4755.

https://doi.org/10.1039/C7AN01158J

2. Murphy, R. C.; Okuno, T.; Johnson, C. A.; Barkley, R. M. "Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry." Analytical Chemistry, 2017, 89, 8545-8553.

https://doi.org/10.1021/acs.analchem.7b02375

1. Jiang, X.; Wang, J.; Guan, Q.; Hu, J.; Xu, J.; Chen, H. "Identification of C=C Location of Unsaturated Phosphatidylcholines in Cell by Photochemical Reaction-Tandem Mass Spectrometry." Chinese Journal of Analytical Chemistry, 2017, 45, 1988-1995.

https://doi.org/10.11895/j.issn.0253-3820.170350

 

访问量:9715