关注公众号

获得最新科研资讯

Xia Lab-Radical Mass Spectrometry

Intro block

Share
Introduction to the laboratory

Welcome

Our research program aims broadly at developing new mass spectrometry (MS) methods for bio-analysis. Research efforts are currently focused on utilizing radical reactions as a unique approach to providing the high level of structural information of proteins and lipids, such as disulfide linkage pattern and carbon-carbon double bond location. We are also developing new MS instrumentation to investigate the radical attack on biomolecules in the gas phase and characterizing a series of peptide or protein radicals which are of biological importance. 

1. Gas-phase radical ion chemistry

Radical ions, which consist of unpaired electrons, offer distinct gas-phase ion chemistry as compared to the even-electron species. Radical chemistry can be utilized to tackle challenging problems, such as differentiating isomeric structures, which would otherwise not be solved by traditional MS analysis of even-electron ions of the biomolecules. We are developing MS instrumentation and methods to facilitate radical reactions for either in the vacuum or in ambient air.

1. Radical reactions at the interface of ESI-MS.

Radicals or excited neutrals are generated via air discharge or UV photolysis and subsequently reacted with ions entrained in the ESI plume.  Radical reactions are subsequently monitored and characterized in situ by MS analysis. Reactions of peptides and lipids with various radical species have been investigated, including •OH, •CH2OH, excited state of (CH3)2CO.  Novel analytical applications based on these reactions have been developed.

AC; 2010, 82, 2856JASMS., 2011, 22, 922Analyst, 2013, 138, 2840;JASMS, 2014, 25, 1192.

 

2. Ion/radical reactions in a linear ion trap mass spectrometer.

A first linear ion trap mass spectrometer capable of studying reactions between the mass-selected ions and radicals has been recently developed and tested in collaboration with Prof. Zheng Ouyang from Biomedical Engineering at Purdue. This instrument uses a rectilinear ion trap as the mass analyzer and gas-phase reactor, an ESI as the source of the bimolecular ions, a pulsed pyrolysis valve for the generating an intense radical beam, and a glow discharge electron impact (GDEI) source for radical characterization. This MS platform can facilitate mechanistic studies on the radical attack to biomolecules that are of biological significance

 

3. Chemistry of bio-radical ions.

Through radical relations at ESI-MS interface, our group has synthesized and studied cysteine sulfinyl radical in the gas phase (Cys-SO•), which has a wide relevance to radical-induced oxidation of proteins, however, has been poorly characterized due to its transient nature in the condensed phases. Different from carbon-centered radicals, we have discovered that sulfinyl radical has a dual property of being acting as a base or a radical via combined experimental and theoretical approaches. The base property allows the formation of proton bridging between the radical site and the neighboring amino acid residues and thus contributes to the overall structural and chemical property of a polypeptide.

Love et al. J. Am. Chem. Soc., 2013, 135, 6226

Tan et al. J Phys. Chem. A, 2014, 118 ,11828

 

We also systematically investigated the inter- and intra-molecular reactivity of the sulfinyl radicals. They showed that the cysteine sulfinyl radical can react with a disulfide bond or a thiol group within a peptide, which has implications to radical-induced disulfide bond scrambling.

Using functionalized sulfinyl radical as a precursor of glycyl-type radical, we have also developed an experimental approach based on tandem mass spectrometry to correlate the electronic property of the connecting groups to the stability of glycyl-type radical species (Angew. Chem., Int. Ed., 2014, 53, 1887-1890, featured as the front cover and the “hot article”).

Tan et al. Angew. Chem. Int. Ed. 2014, 53, 1887

4. Application of radical chemistry for bio-analysis Analysis of unsaturated lipids:

Facile determination of C=C bond locations of lipids is a long-standing challenge for lipid analysis using MS. Intact lipid analysis via conventional low energy collisional activation tandem mass spectrometry does not provide information for the C=C location because much higher energies are required for cleaving C-C or C=C bonds and thus no fragments specific to the C=C locations can be produced. Utilizing the high reactivity of C=C with radicals or electrophilic excited state molecules, our group has recently developed coupling Paternò–Büchi (PB) reaction with MS/MS for highly confident C=C bond location determination in lipids (Angew. Chem., Int. Ed, 2014, 53, 2592-2596). This PB-MS/MS strategy is currently being developed for unsaturated lipid C=C location isomer characterization and quantitation of biological samples (tissue, cell lines, plasma), application to shotgun and separation based lipidomics, biomarker discovery, and bio-imaging.

Ma and Xia, Angew. Chem. Int. Ed. 2014, 53, 2592

 

2. PB-MS/MS developed by our group

34. Hai-Fang Li, Jing Zhao, Wenbo Cao, Wenpeng Zhang, Yu Xia*, and Zheng Ouyang*, “Site-Specific Photochemical Reaction for Improved C=C Location Analysis of Unsaturated Lipids by Ultraviolet Photodissociation” Research, 2022, Article ID 9783602, Published: 12 Feb 2022

https://doi.org/10.34133/2022/9783602

33. Qiaohong Lin, Pengyun Li, Mengxuan Fang, Donghui Zhang, and Yu Xia*, “Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines” Anal. Chem. 2021, Publication Date:December 21

https://doi.org/10.1021/acs.analchem.1c03494

32. Jing Zhao, Mengxuan Fang, Yu Xia*, “A Liquid Chromatography-Mass Spectrometry Workflow for In-Depth Quantitation of Fatty Acid Double Bond Location Isomers”J. Lipid. Res. 2021, Available online 24 August .

https://doi.org/10.1016/j.jlr.2021.100110

31. Qingyuan Hu, Yu Xia*, Xiaoxiao Ma*, “Comprehensive Structural Characterization of Lipids by Coupling Paternò–Büchi Reaction and Tandem Mass Spectrometry”, In: Hsu FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY.

https://doi.org/10.1007/978-1-0716-1410-5_4

30. Tian Xia, Ming Yuan, Yongwei Xu, Feng Zhou, Kate Yu*, and Yu Xia*, “Deep Structural Annotation of Glycerolipids by the Charge-Tagging Paterno–Büchi Reaction and Supercritical Fluid Chromatography–Ion Mobility Mass Spectrometry", Anal. Chem. 2021, 93, 23, 8345–8353

https://pubs.acs.org/doi/10.1021/acs.analchem.1c01379

29. Hanlin Ren, Alexander Triebl, Sneha Muralidharan, Markus R. Wenk*, Yu Xia* and Federico Torta*, "Mapping the Distribution of Double Bond Location Isomers in Lipids across Mouse Tissues", Analyst, 2021,146, 3899-3907

https://doi.org/10.1039/D1AN00449B

28. X. Ma, Y. Xia, "Unsaturated Lipid Analysis via Coupling the Paternò–Büchi Reaction with ESI-MS/MS", Lipidomics. 2020: 148-174.

27. Xue Zhao, Gang Wu, Wenpeng Zhang, Mengqiu Dong, and Yu Xia*, "Resolving Modifications on Sphingoid Base and N-Acyl Chain of Sphingomyelin Lipids in Complex Lipid Extracts", Anal. Chem. 2020, 92, 21, 14775–14782

https://doi.org/10.1021/acs.analchem.0c03502

26. Jing Zhao, Xiaobo Xie, Qiaohong Lin, Xiaoxiao Ma, Pei Su, Yu Xia*, "Next-Generation Paternò–Büchi Reagents for Lipid Analysis by Mass Spectrometry", Anal. Chem. 2020, 92, 19, 13470–13477

https://pubs.acs.org/doi/10.1021/acs.analchem.0c02896

25. Elissia T. Franklin, Yu Xia*, "Structural elucidation of triacylglycerol using online acetone Paternò–Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry" , Analyst. 2020, 145, 6532-6540.

https://doi.org/10.1039/D0AN01353F

24. Elissia Franklin, Samuel Shields, Jeffrey Manthorpe, Jeffrey C. Smith, Yu Xia, Scott A. Mcluckey*, "Coupling Headgroup and Alkene Specific Solution Modifications with Gas-Phase Ion/Ion Reactions for Sensitive Glycerophospholipid Identification and Characterization", J. Am. Soc. Mass Spectrom. 2020, 31, 4, 938–945.

https://doi.org/10.1021/jasms.0c00001

23. Wenpeng Zhang*, Bing Shang, Zheng Ouyang, Yu Xia*, "Enhanced Phospholipid Isomer Analysis by Online Photochemical Derivatization and RPLC-MS", Anal. Chem. 2020, 92, 9, 6719–6726.

https://doi.org/10.1021/acs.analchem.0c00690

22. Tian Xia, Hanlin Ren, Wenpeng Zhang, Yu Xia*, "Lipidome-Wide Characterization of Phosphatidylinositols and Phosphatidylglycerols on C=C Location Level", Analytica Chimica Acta, 2020, 1128, 107-115.

http://dx.doi.org/10.1016/j.aca.2020.06.017

21. Wenbo Cao, Simin Cheng, Jing Yang, Wenpeng Zhang, Zishuai Li, Qinhua Chen, Yu Xia, Zheng Ouyang*, Xiaoxiao Ma*, "Large-scale lipid analysis with C=C location and sn-position isomer resolving power", Nat Commun, 2020, 11, 375.

https://www.nature.com/articles/s41467-019-14180-4

20. 马潇潇,胡清源,瑕瑜*, "Paternò-Büchi(PB)反应与串联质谱结合实现不饱和脂质精确结构解析", 分析测试学报, 2020, 39(1), 19-27.

http://new.fxcsxb.com/fxcsxb/ch/reader/view_abstract.aspx?file_no=20200103&flag=1

19. Xiaobo Xie, Jing Zhao, Miao Lin, Jinlan Zhang, Yu Xia*, "Profiling of Cholesteryl Esters by Coupling Charge Tagging Paternò-Büchi Reaction and Liquid Chromatography-Mass Spectrometry", Anal. Chem. 2020, 92, 12, 8487–8496.

https://doi.org/10.1021/acs.analchem.0c01241

18. Haifang Li, Wenbo Cao, Xiaoxiao Ma, Xiaobo Xie, Yu Xia, Zheng Ouyang*, "Visible-Light-Driven [2 + 2] Photocycloadditions between Benzophenone and C=C Bonds in Unsaturated Lipids", J. Am. Chem. Soc. 2020, 142, 7, 3499–3505.

https://doi.org/10.1021/jacs.9b12120

17. Wenpeng Zhang, Bing Shang, Yu Xia, "Comprehensive Characterization of Phospholipid Isomers in Human Platelets", J. Anal. Test., 2020, 4, 210–216.

https://link.springer.com/article/10.1007/s41664-020-00137-w

16. Q. Lin, D. Zhang, Y. Xia*, "Analysis of Ether Glycerophosphocholines at the Level of C=C Locations from Human Plasma", Analyst, 2020, 145, 513-522.

https://doi.org/10.1039/C9AN01515A

15. X. Zhao, W. Zhang, D. Zhang, X. Liu, W. Cao, Q. Chen, Z. Ouyang, Y. Xia*, "A Lipidomic Workflow Capable of Resolving sn- and C=C Location Isomers of Phosphatidylcholines", Chem. Science, 2019, 10, 10740-10748.

https://doi.org/10.1039/C9SC03521D

14. Y. Su, J. Page, X. Ma, R. Shi, Y. Xia*, Zheng Ouyang*, "Mapping Lipid C=C Location Isomers in Organ Tissues by Coupling Photochemical Derivatization and Rapid Extractive Mass Spectrometry", Int. J. Mass Spectrom. 2019, 445, 116206

https://doi.org/10.1016/j.ijms.2019.116206

13. Elissia T. Franklin, Stella K. Betancourt, Caitlin E. Randolph, Scott A. McLuckey* , and Yu Xia* ,"In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry",  Anal Bioanal Chem. 2019, 411, 4739–4749.

https://doi.org/10.1007/s00216-018-1537-1

12. R. Zou, W. Cao, L. Chong, W. Hua, H. Xu, Y. Mao, J. Page, R. Shi, Y. Xia, Tony Y. Hu, W. Zhang*, and Z. Ouyang*, "Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer", Anal. Chem. 2019, 91, 1, 1157–1163

https://doi.org/10.1021/acs.analchem.8b04935

11. X. Xie, Y. Xia*, "Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry", Anal. Chem. 2019, 91, 7173-7180.

https://doi.org/10.1021/acs.analchem.9b00374

10. W. Zhang, S. Chiang, Z. Li, Q. Chen, Y. Xia, Z. Ouyang*, "A Polymer Coating Transfer Enrichment for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples", Angew. Chem., Int. Ed., 2019, 58, 6064-6069.

https://doi.org/10.1002/anie.201900011

9. W. Zhang, D. Zhang, Q. Chen, J. Wu, Z. Ouyang*, Y. Xia*, "Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers", Nat. Commun., 2019, 10, 79.

https://www.nature.com/articles/s41467-018-07963-8

8. L. Chong, R. Tian, R. Shi, Z. Ouyang*, and Y. Xia*, "Coupling the Paternò-Büchi (PB) Reaction With Mass Spectrometry to Study Unsaturated Fatty Acids in Mouse Model of Multiple Sclerosis", Front. Chem. 2019, 7:807.

https://doi.org/10.3389/fchem.2019.00807

7. F. Tang*, C. Guo, X. Ma, J. Zhang, Y. Su, R. Tian, R. Shi, Y. Xia, X. Wang, Z. Ouyang*, "Rapid in situ Profiling of Lipid C=C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions", Anal. Chem. 2018, 90, 5612-5619

https://doi.org/10.1021/acs.analchem.7b04675

6. J. Li, S. Condello, J. T. Pepin, X. Ma, Y. Xia, T. D. Hurley, D. Matei*, and J. Cheng*, “Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells”, Cell Stem Cell, 2017, 20, 3, 301-314

https://doi.org/10.1016/j.stem.2016.11.004

5. J. Ren, E.T. Franklin, Y. Xia*, "Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry", J. Am. Soc. Mass Spectrom. 2017, 28, 1432-1441

https://doi.org/10.1021/jasms.8b05584

4. X. Ma, X. Zhao, J. Li, W. Zhang, J.-X. Cheng, Z. Ouyang*, Y. Xia*, "Photochemical Tagging for Quantitation of Unsaturated Fatty Acids by Mass Spectrometry", Anal. Chem. 2016, 88, 8931–8935

https://doi.org/10.1021/acs.analchem.6b02834

3. C. A. Stinson, Y. Xia*, "A Method of coupling Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating C=C bond in glycerophospholipids", Analyst, 2016, 141, 3696-3704

https://doi.org/10.1039/C6AN00015K

2. X. Ma, L. Chong, R. Tian, R. Shi, T. Y. Hu, Z. Ouyang*, Y. Xia*, "Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction", Proc. Natl. Acad. Sci. USA, 2016, 113, 2573-2578. Featured by C&E News and Nature Methods

https://doi.org/10.1073/pnas.1523356113

1. X. Ma and Y. Xia*, "Pinpointing Double Bonds in Lipids by Paternò–Büchi Reactions and Mass Spectrometry", Angew. Chem., Int. Ed, 2014, 53, 2592-2596.

https://doi.org/10.1002/anie.201310699

3. Advances of PB-MS/MS by other research groups around the world.(2017-2022)

36. Chen Y. Y.; Xie C. Y.; Wang X. X.; Cao G. D.; Ru. Y.; Song Y. Y.; Iyaswamy A.; Li M.; Wang J. N.*; Cai Z. W.*; 3Acetylpyridine On-Tissue Paterno−Buchi Derivatization Enabling High Coverage Lipid C=C Location-Resolved MS Imaging in Biological Tissues. Analytical Chemistry, 2022.

https://doi.org/10.1021/acs.analchem.2c03089

35. Feng, G. F.; Gao, M.; Wang L.W.; Chen J. Y.; Hou M. L.; Wan Q. Q.; Lin Y.; Xu G. Y.; Qi X. T.; Chen S. M.*; Dual-resolving of positional and geometric isomers of C=C bonds via bifunctional photocycloaddition-photoisomerization reaction system. Nature Communications, 2022, 13, 2652

https://doi.org/10.1038/s41467-022-30249-z

34. Mao, R.; Li, W.; Ji, P.; Ding, H.; Teka, T.; Zhang, L.; Fu, Z.; Fu, X.; Kaushal, S.; Dou, Z.*; Han, L.*; An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. Journal of Chromatography A, 2022, 1675, 463176

https://doi.org/10.1016/j.chroma.2022.463176

33. Sun, J.; Liu, R. X.; Li, S.; Li, W. *; M. L. Gross*; Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nature Communications, 2021, 12, 7270

https://doi.org/10.1038/s41467-021-27588-8

32. Han, Y.; Chen, P.; Li, Z.; Wang, X.; Sun, C. *; Multi-wavelength visible-light induced [2+2] cycloaddition for identification of lipid isomers in biological samples. Journal of Chromatography A, 2022, 1662, 462742

https://doi.org/10.1016/j.chroma.2021.462742

31. Liu, Z.; S. Rochfort*; Regio-distribution and double bond locations of unsaturated fatty acids in phospholipids of bovine milk. Food Chemistry, 2021, Available online 2 November.

https://doi.org/10.1016/j.foodchem.2021.131515

30. Deng, J.; Yang, Y.*; Zeng, Z.; Xiao, X.; Li, J.; Luan, T.*; Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 38, 13089–13098

https://doi.org/10.1021/acs.analchem.1c03249

29. Zhang, J.; Guo, C.; Huo, X.; Ma, X.; Li, X.; Zeper, A.; Chu, Y.; Wang, X.; Tang, F.; Unsaturated lipid isomeric imaging based on the Paternò–Büchi reaction in the solid phase in ambient conditions. Talanta, 2021, 235, 122816.

https://doi.org/10.1016/j.talanta.2021.122816

28. Sun, C; Ma, C; Li, L; Han, Y; Wang, D; Wan,X; "A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues", Chinese Chemical Letters, 2021, Available online 12 August.

https://doi.org/10.1016/j.cclet.2021.08.034

27. Huang, W.; Zhou. H.; Yuan, M.; Lan, L.; Hou, A.; Ji, S. Comprehensive Characterization of the Chemical Constituents in Platycodon Grandiflorum by an Integrated Liquid Chromatography-Mass Spectrometry Strategy. Journal of Chromatography A, 2021, 1654, 462-477.

https://doi.org/10.1016/j.chroma.2021.462477

26. Yang Y. Coupling Paternò-Büchi Reaction with Ambient NanoESI-MS for Identification of Unsaturated Triacylglycerols in Peanut Oils. Journal of Chinese Mass Spectrometry Society, 2021, 42(4): 455-461.

http://www.jcmss.com.cn/EN/10.7538/zpxb.2021.0032

25. Wang, D.; Park, H.; Wang, Z.; Lacombe, R.S.; Shmanai, V.V.; Bekish, A.V.; Schmidt, K.; Shchepinov, M.S.; Brenna, J.T.“Toward Quantitative Sequencing of Deuteration of Unsaturated Hydrocarbon Chains in Fatty Acids" Analytical Chemistry, 2021, 93, 8238–8247

https://doi.org/10.1021/acs.analchem.1c01016

24. Xu, S.; Lv, X.; Wu, B.; Xie, Y.; Wu, Z.; Tu, X.; Chen, H.; Wei, F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. Journal of Agricultural and Food Chemistry, 2021

https://doi.org/10.1021/acs.jafc.0c07268

23. Wäldchen, F.; Mohr, F.; Wagner, A.H.; Heiles, S. "Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C= C position-resolved MS2 imaging." Analytical Chemistry. 2020, 92, 14130–14138

https://doi.org/10.1021/acs.analchem.0c03150

22. Jeck, V.; Froning, M.; Tiso, T.; Blank, L. M.; Hayen, H. "Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy) alkanoic acids by liquid chromatography–mass spectrometry applying online Paternò–Büchi reaction." Analytical and bioanalytical chemistry, 2020, 412, 5601-5613.

https://link.springer.com/article/10.1007/s00216-020-02776-5

21.Maddox, S. W., Olsen, S. S., Velosa, D. C., Burkus-Matesevac, A., Peverati, R., & Chouinard, C. D. Improved Identification of Isomeric Steroids using the Paternò-Büchi Reaction with Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 2086–2092

https://doi.org/10.1021/jasms.0c00215

20. Xu, S.; Wei, F.; Xie, Y.; Wu, B.; Lv, X.; Qin, Z.; Chen, H. Localisation of C=C Bond and Absolute Quantification of Unsaturated Fatty Acids in Vegetable Oils based on Photochemical Derivatisation Reaction Coupled with Mass Spectrometry. International Journal of Food Science & Technology, 2020, 55,  2883-2892

https://doi.org/10.1111/ijfs.14546

19. Li, P.; Deng, J.; Xiao, N.; Cai, X.; Wu, Q.; Lu, Z.; Du, B. "Identification of polyunsaturated triacylglycerols and CC location isomers in sacha inchi oil by photochemical reaction mass spectrometry combined with nuclear magnetic resonance spectroscopy." Food chemistry, 2020, 307, 125568.

https://doi.org/10.1016/j.foodchem.2019.125568

18. Zhu, Y.; Wang, W.; Yang, Z. "Combining Mass Spectrometry with Paternò-Büchi Reaction to Determine Double-bond Positions in Lipids at the Single-cell Level." Analytical Chemistry, 2020, 92, 11380–11387

https://doi.org/10.1021/acs.analchem.0c02245

17. Xu, S.; Wu, B.; Oresic, M.; Xie, Y.; Yao, P.; Wu, Z.; Wei, F. "Double Derivatization Strategy for High-Sensitivity and High-Coverage Localization of Double Bonds in Free Fatty Acids by Mass Spectrometry." Analytical Chemistry, 2020, 92, 6446-6455.

https://doi.org/10.1021/acs.analchem.9b05588

16. Feng, G.; Hao, Y.; Wu, L.; Chen, S. "A visible-light activated [2+ 2] cycloaddition reaction enables pinpointing carbon–carbon double bonds in lipids." Chemical Science, 2020, 11, 7244-7251.

https://doi.org/10.1039/D0SC01149E

15. Esch, P.; Heiles, S. "Investigating C=C Positions and Hydroxylation Sites in Lipids Using Paternò–Büchi Functionalization Mass Spectrometry." Analyst, 2020, 145, 2256-2266.

https://doi.org/10.1039/C9AN02260K

14. Wäldchen, F.; Spengler, B.; Heiles, S. "Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive Paternò–Büchi Matrix for Double-Bond Localization in Isomeric Phospholipids." Journal of the American Chemical Society, 2019, 141, 11816-11820.

https://doi.org/10.1021/jacs.9b05868

13. Deng, J.; Yang, Y.; Liu, Y.; Fang, L.; Lin, L.; Luan, T. "Coupling Paternò-Büchi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for In Vivo and Microscale Profiling of Lipid C═ C Location Isomers in Complex Biological Tissues." Analytical chemistry, 2019, 91, 4592-4599.

https://doi.org/10.1021/acs.analchem.8b05803

12. Esch, P.; Fischer, M.; Heiles, S.; Schäfer, M. "Olefinic Reagents Tested for Peptide Derivatization with Switchable Properties: Stable upon Collision Induced Dissociation and Cleavable by In-Source Paternò-Büchi Reactions." Journal of Mass Spectrometry, 2019, 54, 976-986.

https://doi.org/10.1002/jms.4474

11. Birk, F.; Fraatz, M. A.; Esch, P.; Heiles, S.; Pelzer, R.; Zorn, H. "Industrial Riboflavin Fermentation Broths Represent a Diverse Source of Natural Saturated and Unsaturated Lactones." Journal of Agricultural and Food Chemistry, 2019, 67, 13460-13469.

https://doi.org/10.1021/acs.jafc.9b01154

10. Zhao, X.; Chen, J.; Zhang, W.; Yang, C.; Ma, X.; Zhang, S.; Zhang, X. "Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity." Journal of The American Society for Mass Spectrometry, 2019, 30, 2646-2654.

https://doi.org/10.1021/jasms.8b06287

9. Bednařík, A.; Bölsker, S.; Soltwisch, J.; Dreisewerd, K., "An On-Tissue Paternò–Büchi Reaction for Localization of Carbon–Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption–Ionization Mass-Spectrometry Imaging." Angewandte Chemie International Edition, 2018, 57, 12092-12096.

https://doi.org/10.1002/ange.201806635

8. Jeck, V.; Korf, A.; Vosse, C.; Hayen, H. "Localization of Double-Bond Positions in Lipids by Tandem Mass Spectrometry Succeeding High-Performance Liquid Chromatography with Post-Column Derivatization." Rapid Communications in Mass Spectrometry, 2019, 33, 86-94.

https://doi.org/10.1002/rcm.8262

7. Bechtella, L.; Kirschbaum, C.; Cosset, M.; Clodic, G.; Matheron, L.; Bolbach, G.; Sagan, S.; Walrant, A.; Sachon, E. "Benzophenone Photoreactivity in a Lipid Bilayer To Probe Peptide/Membrane Interactions: Simple System, Complex Information." Analytical Chemistry, 2019, 91, 9102-9110.

https://doi.org/10.1021/acs.analchem.9b01584

6. Korf, A.; Jeck, V.; Schmid, R.; Helmer, P. O.; Hayen, H. "Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package." Analytical Chemistry, 2019, 91, 5098-5105.

https://doi.org/10.1021/acs.analchem.8b05493

5. Xu, T.; Pi, Z.; Song, F.; Liu, S.; Liu, Z. "Benzophenone used as the photochemical reagent for pinpointing C= C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches." Analytica chimica acta, 2018, 1028, 32-44.

https://doi.org/10.1016/j.aca.2018.04.046

4. Esch, P.; Heiles, S. "Charging and Charge Switching of Unsaturated Lipids and Apolar Compounds Using Paternò-Büchi Reactions." Journal of the American Society for Mass Spectrometry, 2018, 29, 1971-1980.

https://doi.org/10.1021/jasms.8b05694

3. Wäldchen, F.; Becher, S.; Esch, P.; Kompauer, M.; Heiles, S. "Selective Phosphatidylcholine Double Bond Fragmentation and Localisation Using Paternò–Büchi Reactions and Ultraviolet Photodissociation." Analyst, 2017, 142, 4744-4755.

https://doi.org/10.1039/C7AN01158J

2. Murphy, R. C.; Okuno, T.; Johnson, C. A.; Barkley, R. M. "Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry." Analytical Chemistry, 2017, 89, 8545-8553.

https://doi.org/10.1021/acs.analchem.7b02375

1. Jiang, X.; Wang, J.; Guan, Q.; Hu, J.; Xu, J.; Chen, H. "Identification of C=C Location of Unsaturated Phosphatidylcholines in Cell by Photochemical Reaction-Tandem Mass Spectrometry." Chinese Journal of Analytical Chemistry, 2017, 45, 1988-1995.

https://doi.org/10.11895/j.issn.0253-3820.170350

 

总访问量:1992