联系我们
意见反馈

关注公众号

获得最新科研资讯

Ultrafast Spectroscopy Lab

简介 研究和利用超短脉冲光源对生物、材料、化学等领域的超快物理过程进行表征和描述。

分享到
实验室简介

欢迎关注超快光谱实验室!

Welcome to the Ultrafast Spectroscopy Laboratory!

宁波大学超快光谱实验室成立于2021年,实验室负责人是国家级青年人才入选者段红光教授。实验室主要研究和利用超短脉冲技术对生物、材料、化学中的超快物理过程进行表征和描述。目前实验室由3名教授、3名副教授、1名兼职国外研究员和1名讲师组成。

The Ultrafast Spectroscopy Laboratory of Ningbo University was established in 2021. The head of the laboratory is Professor Duan Hongguang, an overseas outstanding young scientist. The laboratory mainly studies and uses ultrashort pulse technology to characterize and describe ultrafast physical processes in biology, materials, and chemistry. The laboratory currently consists of 3 professors, 3 associate professors, 1 part-time foreign researcher and 1 lecturer.

                    

                                   

段红光教授与其合作团队在Science Advances上发表学术论文(Professor Duan Hongguang and his collaborative team published academic papers in Science Advances)

近日,物理科学与技术学院段红光教授与多伦多大学R. J. Dwayne Miller教授(英国以及加拿大科学院院士)、德国汉堡大学Michael Thorwart教授以及马克斯普朗克研究所合作,在国际知名期刊Science Advances上发表题为Unraveling Quantum Coherences Mediating Primary Charge Transfer Processes in Photosystem II Reaction Center的学术论文。

植物反应中心蛋白是自然界进化出唯一能够利用电荷转移过程电离水产生氧气的功能蛋白,其具体的物理机制尚未清晰。该研究利用二维相干光谱的高时间分辨能力,在低温下(20K)探测了反应中心蛋白在能量以及电荷传输过程中的量子相干效应。该工作揭示了在不同的电荷传输路径中,具有极强激子耦合的叶绿素(大约150cm-1)可产生长时间的电子相干。并且,实验发现,该量子相干效应可有效对抗环境噪声。即便在室温下,电子相干也可存在百飞秒量级。同时,该研究发现,具有中等耦合的叶绿素(小于50cm-1)之间不会产生长时的电子相干,即便在20K的温度下。

该工作通过利用二维相干光谱测量低温下反应中心的能量以及电荷传输过程,揭示了具有不同电子耦合的叶绿素之间的量子相干特性以及它与环境之间的关系。该工作发表于国际知名期刊Science Advances,该杂志发表原创性强以及影响力大的工作。该工作得到了国家自然科学基金委、宁波大学以及德国DFG基金的支持。宁波大学为第一完成单位,物理科学与技术学院Ajay Jha(兼职)、章盼盼为第一作者,段红光为最后通讯作者。

(Recently, Professor Duan Hongguang from the School of Physical Science and Technology and R J. Professor Dwayne Miller (academician of the British and Canadian Academy of Sciences), Professor Michael Thorwart from the University of Hamburg in Germany, and the Max Planck Institute collaborated to publish an academic paper titled "Unremoving Quantum Coherence Mediating Primary Charge Transfer Processes in Photosystem II Reaction Center" in the internationally renowned journal Science Advances.

Plant reaction center proteins are the only functional proteins evolved in nature that can ionize water to produce oxygen through charge transfer processes, but their specific physical mechanisms are not yet clear. This study utilized the high temporal resolution of two-dimensional coherent spectroscopy to detect the quantum coherence effect of reaction center proteins in energy and charge transfer processes at low temperatures (20K). This work reveals that chlorophyll (approximately 150cm-1) with extremely strong exciton coupling can generate electron coherence for growth time in different charge transfer pathways. Moreover, the experiment found that the quantum coherence effect can effectively counteract environmental noise. Even at room temperature, electronic coherence can exist in the order of hundreds of femtoseconds. Meanwhile, the study found that chlorophyll with moderate coupling (less than 50cm-1) does not exhibit long-term electronic coherence, even at temperatures of 20K.

This work reveals the quantum coherence characteristics between chlorophyll with different electronic coupling and its relationship with the environment by using two-dimensional coherent spectroscopy to measure the energy and charge transfer process of reaction centers at low temperatures. This work is published in the internationally renowned journal Science Advances, which publishes highly original and influential works. This work has received support from the National Natural Science Foundation of China, Ningbo University, and the German DFG Fund. Ningbo University is the first completion unit, Ajay Jha (part-time) and Zhang Panpan from the School of Physical Science and Technology are the first authors, and Duan Hongguang is the last corresponding author.)

罗嗣佐教授带来有关阿秒光脉冲的主题报告(Professor Luo Sizuo brings a thematic report on attosecond light pulses)

12月13日下午,吉林大学原子与分子物理研究所罗嗣佐教授在宁波大学龙赛理科楼报告厅为学院师生带来“探索物质电子动力学利器——阿秒光脉冲”的主题报告。(On the afternoon of December 13th, Professor Luo Sizuo from the Institute of Atomic and Molecular Physics of Jilin University presented a keynote speech on "Exploring the Tool of Material Electron Dynamics - Atosecond Light Pulses" to the faculty and students of the Longsai Science Building of Ningbo University.)

Shaul Mukamel教授受段红光教授邀请来宁波大学访问交流(Professor Shaul Mukamel was invited by Professor Duan Hongguang to visit and exchange ideas at Ningbo University)

11月24日,美国科学院院士Shaul Mukamel教授接受了段红光教授的邀请来到宁波大学访问交流,期间Shaul Mukamel教授在段红光教授的陪同下先后参观了宁波大学的校园风光和超快光谱实验室。

下午14时,Shaul Mukamel教授在龙赛理科楼一楼大报告厅做了《用量子光、纠缠光子和X射线脉冲监测元素飞秒分子事件》这令人记忆深刻的学术报告。

On November 24th, Professor Shaul Mukamel, an academician of the American Academy of Sciences, accepted an invitation from Professor Duan Hongguang to visit and exchange ideas at Ningbo University.During this period,  accompanied by Professor Duan Hongguang, Professor Shaul Mukamel visited the campus scenery and ultrafast spectroscopy laboratory of Ningbo University.

At 14:00 in the afternoon, Professor Shaul Mukamel gave a memorable academic presentation titled "Monitoring elementary femtosecond molecular events with quantum light, entangled photons, and X ray pulses" in the lecture hall on the first floor of the Longsai Science Building.

 

二维电子光谱 (2D electronic spectroscopy, 2DES)

二维电子光谱(2DES)是一种超快激光光谱技术,可以探测样品的电子、能量和空间分布。它类似于核磁共振技术,能以高空间分辨率确定复杂的分子结构,是一种能使结构生物学发生革命性变化的光谱技术。2DES是 "终极 "时间分辨非线性光学实验设备,因为它能提供有关系统三阶非线性响应的最大信息量,而且任何其他三阶非线性光谱(如泵浦探针)都包含在二维光谱中。在具有多个相互作用成分的系统中,二维非线性光谱可充分发挥其威力。2DES可提供二维光谱,展现激发与发射频率之间的相关性,同时具有很高的光谱和时间分辨率。2DES可以剖析拥塞的光谱,揭示跃迁之间的分子联系,从而为阐明样品的整体功能提供了一种方法。

Two-dimensional electron spectroscopy (2DES) is an ultrafast laser spectroscopy technique that can detect electrons, energy and spatial distribution of samples. It is similar to nuclear magnetic resonance technology and can determine complex molecular structures with high spatial resolution. It is a spectroscopic technology that can revolutionize structural biology. 2DES is the "ultimate" time-resolved nonlinear optics experimental device because it provides the greatest amount of information about the third-order nonlinear response of the system than any other third-order nonlinear spectroscopy (e.g., pump-probe) are included in the two-dimensional spectrum. In systems with multiple interacting components, 2D nonlinear spectroscopy can realize its full power. 2DES provides two-dimensional spectra showing the correlation between excitation and emission frequencies with high spectral and temporal resolution. 2DES can dissect congested spectra and reveal the molecular connections between transitions, providing a way to elucidate the overall functionality of a sample.

 

                        

超快电子衍射 (ultrafast electron diffraction, UED)

原子运动及相应的结构改变是自然界中化学反应、生命过程等现象的本质。因此,在原子层面实时间、实空间观测物质非平衡态的原子运动和结构演化过程,能深刻地解释这些现象的本质,将物质的微观动力学过程和其物理化学等特性联系起来,为科学突破创造了巨大的机遇。原子层面的动态过程的特征时间在皮秒、飞秒、甚至阿秒量级,目前只有泵浦-探测技术可以实现该量级的时间分辨率。超快电子衍射使用电子作为泵浦-探测技术中的探针,具有高弹性散射截面、低能量沉积、造价及维护成本低等优势,在近十余年间获得快速发展。

Atomic motion and corresponding structural changes are the essence of chemical reactions, life processes and other phenomena in nature. Therefore, observing the atomic motion and structural evolution process of non-equilibrium states of matter at the atomic level in real time and real space can profoundly explain the nature of these phenomena, connect the microscopic dynamic process of matter with its physical and chemical properties, and provide scientific Breakthroughs create huge opportunities. The characteristic time of dynamic processes at the atomic level is on the order of picoseconds, femtoseconds, or even attoseconds. Currently, only pump-detection technology can achieve time resolution of this level. Ultrafast electron diffraction uses electrons as probes in pump-detection technology. It has the advantages of high elastic scattering cross section, low energy deposition, low construction and maintenance costs, and has achieved rapid development in the past ten years.

少周期脉冲及高次谐波产生 (Generation of few-cycle pulse and high harmonics)

人类在探索自然界中各种物理规律的过程中对于瞬态时间尺度的物理现象的研究从未停止。利用更高的时间分辨率来探索更短时间内发生的物理过程一直是物理、生物乃至化学等研宄领域的重要方向。物质中分子的转动与振动过程分别发生在皮秒和飞秒量级, 测量这些运动过程需要飞秒量级的时间分辨, 虽然商业钛宝石激光放大系统己经能够实现25 fs 左右的脉冲输出, 但这样的脉冲宽度还未到达少周期级别,用于研究分子和原子内部阿秒量级的电子运动还远远不够。高次谐波产生是一种极端的非线性效应,强场激光聚焦到气体介质上的时候,会发生非线性效应,可以得到上百阶的高能谐波光子。作为一种相干的宽谱高能光源,它可以用来产生阿秒脉冲。把飞秒激光聚焦到气体/图固体源中,就可以产生高能光子。产生高次谐波需要的场强需要达到 100 TW/cm2 量级,因此需要一台脉冲能量为毫焦级、脉冲长度在少周期量级的激光器来产生。

 

In the process of exploring various physical laws in nature, human beings have never stopped studying physical phenomena on transient time scales. Using higher time resolution to explore physical processes occurring in shorter periods of time has always been an important direction in research fields such as physics, biology and even chemistry. The rotation and vibration processes of molecules in matter occur at the picosecond and femtosecond levels respectively. Measuring these motion processes requires femtosecond time resolution. Although commercial titanium sapphire laser amplification systems can already achieve pulse output of about 25 fs, However, such pulse width has not yet reached the low-period level, and it is far from sufficient for studying the attosecond-level electron motion inside molecules and atoms. The generation of high-order harmonics is an extreme nonlinear effect. When a strong-field laser is focused on a gas medium, a nonlinear effect will occur, and hundreds of high-energy harmonic photons can be obtained. As a coherent broad-spectrum high-energy light source, it can be used to generate attosecond pulses. High-energy photons can be generated by focusing a femtosecond laser into a gas/solid source. The field strength required to generate high-order harmonics needs to be on the order of 100 TW/cm2, so a laser with a pulse energy of millijoules and a pulse length of a few cycles is required to generate it.

 

访问量:573