联系我们
意见反馈

关注公众号

获得最新科研资讯

6G环境认知通信与感知课题组-曾勇

简介 移动通信全国重点实验室

分享到

时延多普勒对齐调制

研究简介

       6G发展的新趋势为无线传输技术的发展提供了新的机遇。具体而言,大规模MIMO向超大规模MIMO的演进显著提升了空间分辨率;毫米波和太赫兹高频信道在空间域和时间域呈现稀疏特性;通过融合超大规模MIMO,定位通信感知一体化技术能够提供超高精度的定位和感知能力。通过挖掘超大规模MIMO的超高空间分辨率和毫米波/太赫兹高频信道的稀疏性,时延多普勒对齐调制(DDAM,Delay-Doppler Alignment Modulation)通过空间-时延-多普勒域信号处理,能够实现多普勒和信道时延扩展的联合调控。DDAM的核心思想是时延-多普勒补偿和逐径波束赋形。通过在发射机或接收机端引入匹配各条路径的时延和多普勒相移,结合逐径波束赋形,可以消除每条径的多普勒效应,并且所有多径信号分量能够同时到达接收机。从而,DDAM可以将时频双选信道转化为时不变无ISI信道,无需进行复杂的信道均衡或多载波传输。对于时不变频率选择性信道,DDAM退化为时延对齐调制(DAM,Delay Alignment Modulation)。

超大规模天线DDAM传输示意图

 

 

研究特点

       针对时不变频率选择性信道,通过建立可调控信道时延扩展的DAM处理架构,能够实现高效的单载波和多载波传输。完美DAM可以将频率选择性信道转化为无ISI信道。当完美DAM不可行时,可以通过普适DAM调控信道时延扩展,同时充分利用多径信号分量。

稀疏多径信道

完美DAM

普适DAM

DAM通信优势

  • 可调控信道时延扩展

  • 无符号间干扰单载波和多载波通信的统一架构,免于复杂的信道均衡

  • 降低保护间隔开销

  • 低信号处理时延和低复杂度接收机

DAM感知优势

  • 低峰旁比

  • 抗多普勒频偏

       此外,针对时频双选信道,基于空间-时延-多普勒域处理的DDAM能够联合调控多普勒和信道时延扩展,可以将时频双选信道转化为时不变的无符号间干扰信道,无需进行复杂的信道均衡或多载波传输。

 

 

研究成果

期刊

[1] H. Lu and Y. Zeng, “Delay alignment modulation: Enabling equalization-free single-carrier communication,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1785–1789, Sep. 2022.

论文链接:https://ieeexplore.ieee.org/document/9790794

[2] H. Lu and Y. Zeng, “Delay alignment modulation: Manipulating channel delay spread for efficient single- and multi-carrier communication,” IEEE Trans. Commun., vol. 71, no. 11, pp. 6316–6331, Nov. 2023. 

论文链接:https://ieeexplore.ieee.org/document/10225416

[3] Z. Xiao and Y. Zeng, “Integrated sensing and communication with delay alignment modulation: Performance analysis and beamforming optimization,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8904–8918, Dec. 2023. 

论文链接:https://ieeexplore.ieee.org/document/10105893

[4] H. Lu, Y. Zeng, S. Jin, and R. Zhang, “Single-carrier delay alignment modulation for multi-IRS aided communication,” IEEE Trans. Wireless Commun., 2023. 

论文链接:https://ieeexplore.ieee.org/document/10231105

[5] H. Lu and Y. Zeng, “Delay-Doppler alignment modulation for spatially sparse massive MIMO communication,” IEEE Trans. Wireless Commun., 2023.

论文链接:https://ieeexplore.ieee.org/document/10314448

会议

[1] Z. Xiao and Y. Zeng, “Integrated sensing and communication with delay alignment modulation,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2022, pp. 793–798.

论文链接:https://ieeexplore.ieee.org/document/9839117

[2] Z. Xiao, Y. Zeng, D. W. K. Ng, and F. Wen, “Exploiting double timescales for integrated sensing and communication with delay-Doppler alignment modulation,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2023, pp. 5731–5736. 

论文链接:https://ieeexplore.ieee.org/document/10279599

[3] X. Wang, H. Lu, and Y. Zeng, “Multi-user delay alignment modulation for millimeter wave massive MIMO,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2023, pp. 6970-6975. 

论文链接:https://ieeexplore.ieee.org/document/10437061

[4] D. Ding, Y. Zeng, and D. Wang, “Channel estimation for delay alignment modulation,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), 2024. 

论文链接:https://arxiv.org/abs/2206.09339

[5] J. Zhang and Y. Zeng, “Delay alignment modulation with hybrid beamforming for spatially sparse communications,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),  2024. 

论文链接:https://arxiv.org/abs/2307.08210

[6] Z. Zhou, Z. Xiao, and Y. Zeng, “Fractional delay alignment modulation for spatially sparse wireless communications,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),  2024. 

论文链接:https://arxiv.org/abs/2403.19951

预印本

[1] X. Wang, H. Lu, Y. Zeng, X. Xu,  and J. Xu, “Achievable rate region and path-based beamforming for multi-user single-carrier delay alignment modulation,” arXiv:2309.00391, 2023. 

论文链接:https://arxiv.org/abs/2309.00391

[2] Z. Xiao, Y. Zeng, D. W. K. Ng, and F. Wen, “Integrated sensing and channel estimation by exploiting dual timescales for delay-Doppler alignment modulation,” arXiv:2310.11326, 2023. 

论文链接:https://arxiv.org/abs/2310.11326

 

 

 

 

 

 

 

 

 

创建: Apr 07, 2024 | 15:39