联系我们
意见反馈

关注公众号

获得最新科研资讯

YongChenLab@NCU

简介 一个从事生物学/化学-药学-医学跨学科交叉研究的科研创新团队。

分享到

Dynamic AFM detection of the oxidation-induced changes in size, stiffness, and stickiness of low-density lipoprotein

2020
期刊 Journal of Nanobiotechnology
Abstract Background Low-density lipoprotein (LDL) is an important plasma lipoprotein transporting lipids to peripheral tissues/cells. The oxidation of LDL plays critical roles in atherogenesis and its oxidized form (oxLDL) is an important risk factor of atherosclerosis. The biomechanical properties of LDL/oxLDL are closely correlated with the disease. To date, however, the oxidation-induced changes in size and biomechanical properties (stiffness and stickiness) of LDL particles are less investigated. Methods In this study, copper-induced LDL oxidation was confirmed by detecting electrophoretic mobility, malondialdehyde production, and conjugated diene formation. Then, the topographical and biomechanical mappings of LDL particles before/after and during oxidation were performed by using atomic force microscopy (AFM) and the size and biomechanical forces of particles were measured and quantitatively analyzed. Results Oxidation induced a significant decrease in size and stiffness (Young’s modulus) but a significant increase in stickiness (adhesion force) of LDL particles. The smaller, softer, and stickier characteristics of oxidized LDL (oxLDL) partially explains its pro-atherosclerotic role. Conclusions The data implies that LDL oxidation probably aggravates atherogenesis by changing the size and biomechanical properties of LDL particles. The data may provide important information for a better understanding of LDL/oxLDL and atherosclerosis.