联系我们
意见反馈

关注公众号

获得最新科研资讯

陈俊超实验室-钙钛矿光伏与先进半导体器件研究

简介 柔性电子、半导体工艺、新能源技术研究方向

分享到

Synergistic Effect of Alkylammonium Chlorides to Trigger an Ultrafast Nucleation for Antisolvent‐Free Perovskite Solar Cells Processed from 2‐Methoxyethanol

2024
期刊 Advanced Energy Materials
Abstract2‐Methoxyethanol (2ME), as a more environmentally friendly solvent with a lower boiling point compared to dimethylformamide, is ideal for the fabrication of perovskite solar cells (PSCs). However, when 2ME is used for antisolvent‐free deposition of perovskite films, an uncontrolled nucleation process and an easy phase transition to the δ‐phase often occur. Herein, an ultrafast nucleation process is developed using methylamine chloride (MACl) and n‐butylammonium chloride (BACl) as dual additives in 2ME without further solvent addition. While MACl can rapidly induce MACl‐based nuclei to initiate the nucleation process for formamidinium lead iodide (FAPbI3), the addition of BACl to the precursor with MACl can further increase the nucleation rate and density of nuclei, and bypass the transition from δ‐ to α‐phase during crystal growth to obtain a highly crystalline and pinhole‐free perovskite film. As a result, the FAPbI3 PSCs achieve a power conversion efficiency (PCE) of 23.6%. This work provides a new inspiration for controlling the crystal quality of perovskite thin films via nucleation rate suitable for upscaling.