联系我们
意见反馈

关注公众号

获得最新科研资讯

杨孟昊课题组

简介 同济大学计算材料学课题组

分享到
实验室简介

       同济大学计算材料学课题组是由杨孟昊博士创建。我们致力于将传统计算材料科学与新兴人工智能相结合,克服原有理论模型无法真实描述固态金属电池界面原子结构的局限性,率先构建了固态锂电池大尺度原子界面(100 nm × 100 nm)模型(超过1千万原子),突破了以往原子模型在模拟时间和尺寸上的限制,开发了锂电池充放电新算法,紧密结合实验验证方法,深入研究微观演变规律,为新材料的设计与开发提供指导意见。我们与清华大学、美国斯坦福大学、美国马里兰大学、德国达姆施塔特工业大学、西班牙巴斯克应用数学中心等世界一流科研机构保持紧密合作。

研究方向:

1. 固态金属电池剥离和沉积过程(机器学习原子势、密度泛函理论计算、分子动力学模拟、有限元模拟等);

2. 设计开发新型无机固态电解质(深度学习理论、开发高通量计算平台、构建数据库等);

3. 新型电池材料电化学计算模拟(正负电极材料、电解质材料、电极/电解质界面、电池热失控等);

4. 预测层状氧化物材料电催化性能(计算电催化基础、自由能台阶图、机器学习等);

5. 细胞膜磷脂双分层界面输运机制(NAMD分子动力学模拟、机器学习等);

正在招聘:

       招聘多个同济大学博士后和研究助理职位,详见招聘信息

电催化合作研究发表于高影响力期刊Nature Catalysis和Nature Communications

链接: https://www.nature.com/articles/s41929-024-01136-1

链接: https://www.nature.com/articles/s41467-024-45654-9

从锂到下一代材料

链接: https://www.materialssquare.com/workshop/2023

Solid-State Symphony: The Atomistic Rhythms of Lithium Deposition

Introduction:

Crystallization is an important phenomenon in materials science, physics, and chemistry  [1,2]. While crystallization induced by the change of temperature or solution is commonly studied, the crystallization under electrochemical deposition remains less explored, despite being a key process in the operation of metal electrodes, such as Li, Na, Mg, and Zn metal anodes for next-generation high-energy rechargeable batteries [3,4]. During electrochemical deposition, metal ions in the electrolyte are deposited and crystallized into metal particles. The energy barrier of the crystallization is a key contributor to the over-potential of electrochemical deposition, which should be minimized to improve the electrochemical performance of the metal anode. High overpotential or polarization leads to low power density, reduced materials utilization, low energy efficiency, and even battery failure, such as dendrite growth and short-circuiting during the plating of metal electrodes [5,6]. Further improvement of these metal anodes, such as Li metal anode, requires an understanding of crystallization processes during electrochemical metal deposition, especially at the atomistic level.

Uniqueness:

Here, using large-scale molecular dynamics simulations, we study and reveal the atomistic pathways and energy barriers of lithium crystallization at the solid interfaces. In contrast to the conventional understanding, lithium crystallization takes multi-step pathways mediated by interfacial lithium atoms with disordered and random-closed-packed configurations as intermediate steps, which give rise to the energy barrier of crystallization. This understanding of multi-step crystallization pathways extends the applicability of Ostwald’s step rule to interfacial atom states and enables a rational strategy for lower-barrier crystallization by promoting favorable interfacial atom states as intermediate steps through interfacial engineering. Our findings open rationally guided avenues of inter-facial engineering for facilitating the crystallization in metal electrodes for solid-state batteries and can be generally applicable for fast crystal growth.

Fig. 1 Atomistic modeling of lithium crystallization at solid-electrolyte interface during Li deposition. a The atomistic model comprises the Li metal slab (light blue) with the solid electrolyte (orange) in the MD simulations. b The ato- mistic structures of the Li–SE interface over a period of energy change during Li deposition. Over the duration of Li deposition, c the energy of Li metal slab referenced to crystalline bulk Li per area and d–f the number of Li atoms with different local configurations, such as body-centered cubic (BCC) and random hexagonal close-packed (rHCP), in the Li metal slab.

Methodology

Our atomistic model of Li–SE interface consists of a Li metal slab with (001) surface in contact with (001) surface of Li2O, which is a common interphase layer formed by the reduction of oxides SEs with Li metal (Fig. 1a). The details of the model and the interatomic potentials are described in Methods. To simulate the Li deposition, the Li atoms are randomly inserted crossing the diffusion channels of Li2O (Fig. 1a) at the rate of one Li every 2 ps corresponding to a current density of 0.16 nA/nm2. By directly modeling the dynamical process of Li insertion with full atomistic details and femtosecond time resolution (Fig. 1b), the large-scale MD simulations reveal the interface structures and the Li diffusion mechanisms at the Li–SE interfaces.

Applications & Future Outlook

To improve the electrochemical performance of Li metal anodes, it’s desirable to lower the energy barrier of Li crystallization, which is a key contributor to the overpotential for electrochemical deposition. The undesired overpotential caused by the kinetic barrier for Li plating at the Li–SE interface can potentially contribute to the nucleation, formation, and growth of lithium dendrite inside the pores or grain boundaries of SEs, and to the failure of the solid-state battery. Therefore, lowering the barrier of Li crystallization at Li–SE interfaces is important to mitigate dendrite formation in solid-state batteries. Based on the understanding of the multi-step pathways with interfacial atomistic states as intermediates, a rational strategy for facilitating crystallization and mitigating the kinetic barrier is to promote the favorable interfacial-atom intermediate, i.e. rHCP-Li, with lower energy and easier transition to the final BCC-Li state (Fig. 2). These interfacial atom states are determined by the Li–SE interface and can be tailored by interface engineering.

 

Fig. 2  A schematic of multiple-step pathways of Li crystallization. The Li+ (orange, anion shown in red) in solid electrolytes (SE) goes through disordered-Li (cyan) and/or rHCP (random hexagonal close-packed)-Li (green) in the interfacial Li layer at the SE interface, and transforms into the crystalline BCC (body-centered cubic)-Li metal (blue).

References

1. De Yoreo, J. J. et al. Crystallization by particle attachment in syn- thetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

2. Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).

3. Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).

4. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

5. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

6. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

Link: https://www.materialssquare.com/blog/Lithium-Deposition

固态电池中锂金属剥离和沉积过程的界面原子机制

       基于锂金属负极的全固态电池代表了一种很有前途的下一代储能系统,但目前受到低电流密度和短循环寿命的限制。由于对其在锂-固体界面的失效机制缺乏了解,特别是导致界面失效的基本原子过程,阻碍了进一步研究改进锂金属负极。通过使用大规模分子动力学模拟方法,可以研究关键的基本原子过程和界面原子结构,对固体电解质上的锂剥离和沉积过程进行了首次原子建模研究。在原子模拟过程中,界面失效随着纳米级孔隙的形成而开始,以及界面结构、锂扩散、粘附能和施加的压力如何影响锂循环过程中的界面失效。通过在模拟中系统地改变固态锂电池的参数,绘制出抑制循环过程中界面失效的施加压力和界面粘附能的参数空间,以指导固态电池的选择。本研究建立了锂剥离和沉积过程的原子模型,并预测了固态锂金属电池未来研发的最佳固体界面和新策略。

发表论文:M. H. Yang, Y. S. Liu, A. M. Nolan, Y. F. Mo, Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid‐State Batteries. Adv. Mater., 33, 2008081 (2021).

 

固态电池中锂金属负极的界面缺陷

       具有锂金属负极的全固态电池是一种很有前途的可充电电池技术,具有高能量密度和更高的安全性。目前,锂金属负极的应用受到锂金属和固体电解质(SE)之间界面失效的困扰。然而,人们对Li-SE界面的缺陷及其对Li循环的影响知之甚少,阻碍了Li金属负极的进一步改进。在此,通过对具有普通SE的Li金属界面进行大规模原子建模,我们发现锂金属在Li-SE界面处形成了纳米薄的无序锂界面缺陷层。这种界面缺陷Li层非常有害,会导致界面失效,例如Li剥离过程中的孔形成和接触损失。通过系统地研究和比较非共格、共格和半共格Li-SE界面,我们发现具有良好晶格共格性的界面减少了界面处的Li缺陷,并抑制了Li循环过程中的界面失效。我们的研究发现了原子锂缺陷在界面处对锂金属负极界面失效的关键作用,并推动了未来固态电池中锂金属负极的原子级界面工程。

发表论文:M. H. Yang, Y. F. Mo, Interfacial defect of lithium metal in solid-state batteries. Angew. Chem. Int. Ed., 60, 2-10 (2021).

 

 

固体界面处的锂结晶

       理解金属负极的电化学沉积对于高能可充电电池至关重要,其中固态锂金属电池引起了广泛的兴趣。一个长期悬而未决的问题是,在与固体电解质的界面处电化学沉积的锂离子如何结晶成锂金属。因此我们使用大规模分子动力学模拟,研究并揭示了固体界面处锂结晶的原子路径和能垒。与传统理解相反,锂结晶采用多步途径,由界面锂原子介导,具有无序和随机密堆积构型作为中间步骤,从而产生结晶能垒。这种对多步结晶路径的理解将奥斯特瓦尔德步进规则的适用性扩展到界面原子态,并通过界面工程将有利的界面原子态作为中间步骤来促进低势垒结晶的合理策略。我们的研究结果开辟了界面工程的合理指导途径,以促进固态电池金属电极的结晶,并且普遍适用于快速晶体生长。

发表论文:M. H. Yang, Y. S. Liu, Y. F. Mo, Lithium Crystallization at Solid Interfaces. Nat. Commun., 14, 2986 (2023).

访问量:4114