http://bigml.cs.tsinghua.edu.cn/~jun/index.shtml

My research focuses on developing statistical machine learning methods to understand complex scientific and engineering data. My current interests are in latent variable models, large-margin learning, Bayesian nonparametrics, and deep learning. Before joining Tsinghua in 2011, I was a post-doc researcher and project scientist at the Machine Learning Department in Carnegie Mellon University.

研究工作围绕机器学习基础理论、算法和应用展开,注重理论与实际问题结合。针对复杂数据隐含结构的学习与利用中的共性问题,研究了结构学习及基于结构的统计学习中若干关键问题,提出:(1)最大熵判别式学习的PAC-Bayes理论与方法;(2)正则化贝叶斯推理及正则化非参数贝叶斯推理理论;(3)非参数化贝叶斯模型的最大间隔学习理论与高效算法等。针对互联网数据挖掘、社交网络分析、多模态数据融合、网络推荐等多个典型应用场景,将基础理论与实际问题结合,提出有效的计算模型和算法,包括:(1)将正则化贝叶斯推理用于解决大规模文本分类、社交网络分析、矩阵低秩分解、多模态数据融合等问题,提出高效推理算法;(2)将结构化最大熵判别式学习用于解决网络环境下信息抽取、实体关系抽取、多模态数据融合与检索等问题,建立了基于结构的网络数据抽取框架及包括StatSnowball在内的若干统计模型,获3项美国专利,研究成果已应用到微软的多个搜索引擎,包括人立方关系搜索引擎和学术搜索引擎等。

上述成果已连续多年在机器学习顶级国际会议和杂志ICML、NIPS、UAI、IJCAI、AAAI、 JMLR、PAMI等发表论文50余篇。受邀担任人工智能与模式识别顶级期刊PAMI的编委,担任机器学习顶级会议ICML 2014、ICML 2015、IJCAI 2015、UAI 2014、NIPS 2013等的领域主席,担任ICML 2014的地区联合主席。研究工作得到国家973计划(课题负责人)、自然科学基金优青基金和重点基金等项目的支持,入选“清华大学221基础研究人才支持计划”。

Regularized Bayesian Inference

Regularized Bayesian inference (RegBayes) is a computational framework that allows your Bayesian and nonparametric Bayesian models to incorporate rich side knowledge into the inference process by defining an appropriate posterior regularization term. When the posterior regularization is defined following the principle of max-margin, RegBayes allows you to learn Bayesian and nonparametric Bayesian models discriminatively, similar to what we do in support vector machines; but here everything is...

Read more