Influence of Water on Tribolayer Growth When Lubricating Steel with a Fluorinated Phosphonium Dicyanamide Ionic Liquid

2019
Journal Lubricants
Download full-text
This work aims to elucidate the role of environmental humidity on the tribological behavior of steel surfaces lubricated with an ionic liquid comprised of a fluorinated phosphonium cation—tributyl-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl-phosphonium—and a dicyanamide anion (i.e. N(CN)2−). Ball-on-disk tribotests were carried out at room temperature and at various levels of relative humidity (RH). Water was found to be required to promote the formation of a tribofilm over the contact area. The reaction layer exhibited a patchy morphology, which resembles that observed formed with conventional antiwear additives such as ZnDTP. A surface-chemical analysis of the tribofilm indicated that the tribofilm is composed of fluorides, oxides, and phosphates, pointing to a stress-induced degradation of the ions and corrosion of the sliding counterparts, which is enabled by the presence of water at the sliding interface.