Occurrence of sporadic super-knock is the main obstacle in the development of advanced gasoline engines. By utilizing a rapid compression machine, events of pre-ignition and super-knock in a closed system under high temperature and high pressure were captured by synchronous high-speed direct photography and pressure measurement. Two different types of engine super-knock could exist. The first type is the super-knock induced by pre-ignition followed by deflagration of the end-gas. This type of super-knock is quite similar to conventional knock and usually causes moderate pressure oscillation. The second type of super-knock exhibits significantly higher magnitude of pressure oscillation than that of the first type due to the detonation of the end-gas. The second type of super-knock is designated as ‘‘Deto-knock’’.
Three conditions must coexist for deto-knock to occur. First, pre-ignition triggers the combustion. Second, end-gas pressure and temperature are high enough to cause detonation. Third, local hot-spot exists in the end-gas that triggers the detonation of the end-gas. The mechanism of deto-knock could be described as hotspot-induced deflagration followed by hot-spot-induced detonation in the end-gas.

The above mechanism obtained in the RCM can also be used to explain the phenomena of super-knock in boosted gasoline engines, as shown in the following Figure. First, pre-ignition occurs before TDC due to a local hot-spot (oil, deposit, oil-gasoline, etc.) in the combustion chamber during the compression stroke. A pre-ignition-triggered flame propagates from the hot-spot to the rest of the mixture. Then, the spark ignition occurs, and the 2nd flame front may propagate if the spark ignition is in an unburned zone. The rapid expansion of the burned gas rapidly compresses the unburned mixture to higher temperature and pressure (about 1000 K, 10 MPa). Finally, a second hotspot (or multiple hot-spots) in the end gas induces the detonation of the un-burned mixture at high temperature and high pressure.

As the timing of the “hot spot” combustion in the unburned mixture is crucial to detonation, this mechanism also helps to explain why an earlier pre-ignition does not always lead to a higher knock intensity. If the “hot spot” appears too early, the in-cylinder pressure and temperature are relatively low. It may turn out to be a deflagration, similar to the combustion processes in the 1st stage. If the “hot spot” appears too late, the majority of the mixture has already been consumed by the deflagration, and pressure tends to decrease with the downward movement of the piston. As a result, the pressure rise and pressure oscillation will be smaller. If the “hot spot” starts near TDC, it is likely to trigger detonation under high pressure and high temperature conditions.


The energy density of the unburned end-gas mixture at the onset of knock was identified as a criterion for super-knock. For gasoline fuel in the test engine, when the energy density of the unburned end-gas mixture exceeded 30 MJ/m3, super-knock was always observed. For lower energy densities, knock or non-knock was observed.
REPRSENTATIVE PAPERS:
- Y. Qi, Y. Xu, Z. Wang, J. Wang, The effect of oil intrusion on super knock in gasoline engine, SAE Technical Papers (2014).
- Z. Wang, H. Liu, T. Song, Y. Xu, J.X. Wang, D.S. Li, T. Chen, Investigation on pre-ignition and super-knock in highly boosted gasoline direct injection engines, SAE Technical Papers (2014).
- Z. Wang, F. Wang, S.J. Shuai, Study of Engine Knock in HCCI Combustion using Large Eddy Simulation and Complex Chemical Kinetics, SAE Technical Papers (2014).
- Z. Wang, H. Liu, T. Song, Y. Qi, X. He, S. Shuai, J. Wang, Relationship between super-knock and pre-ignition, International Journal of Engine Research 16 (2015) 166-180.
- Z. Wang, Y. Qi, X. He, J. Wang, S. Shuai, C.K. Law, Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation, Fuel 144 (2015) 222-227.
- Y. Qi, Z. Wang, J. Wang, X. He, Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock, Combustion and Flame 162 (2015) 4119-4128.
- Z. Wang, H. Liu, R.D. Reitz, Knocking combustion in spark-ignition engines, Progress in Energy and Combustion Science 61 (2017) 78-112.
Created: Mar 11, 2018 | 08:40
高温高压封闭体系内的起爆和传统的爆燃转爆轰(DDT)机理有所不同,由于约束壁面的影响,原本在自由空间中会熄灭的爆轰能够经由反射聚焦而强化,得以传播。而传统的火焰加速机理同样也适用,如下图所示,火核发展过程逐渐形成皱褶火焰面,逐渐加速抵达壁面,接近壁面处的未燃气体收到压缩,发生自燃,产生的激波在壁面附近马赫反射,最终形成爆轰波。

本课题组通过可视化快速压缩机实验,已经探明高温高压封闭体系内的两种起爆模式:激波壁面反射起爆(shock wave reflection induced detonation,SWRID),激波与火焰面交互起爆(shock wave and flame front induced detonation, SWFID),二者都是由于末端自燃产生的激波到达界面,发生了形态转变,形成压力温度骤升的局部热点,使得激波与反应面耦合,发展成为爆轰,两种起爆模式的示意图如下。
SWRID:

SWFID:

1.SWRID
由边缘点火产生的火焰面向下传播的过程中,同时产生了弱激波,入射激波在壁面处发生马赫反射,随着夹角不断减小,三波点贴近壁面,滑移线与壁面之间急剧压缩形成高温区,三波点的激波汇聚导致局部热爆炸,化学反应面得以和激波面耦合产生爆轰。温度(左)、压力(右)。

2.SWFID
中心点火时,我们还观察到火焰面附近的起爆现象,SWFID。首先,火焰传播过程引发了末端自燃,上方的自燃产生了向下传播的反应面和激波,激波在抵达中心火焰面时,会产生折射,和三波点有着类似效果,形成了界面上的局部热点,最后起爆,同样在后续的传播中,在近壁处产生了更强的二次起爆,即SWRID。第一列:温度(左)、压力(右),第二列:HCO(左)、OH(右),第三列为同步实验图片。

代表性论文:
- Z. Wang, Y. Qi, H. Liu, P. Zhang, X. He, J. Wang, Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder, Shock Waves 26 (2016) 687-691.
- Xiang S, Qi Y, Wang Z, Wang J. Numerical simulation of detonation initiation induced by shock wave reflection in a rapid compression machine (in Chinese). Sci Sin Tech 2016;46:1287–95.
- Y. Wang, Y. Qi, S. Xiang, R. Mével, Z. Wang, Shock wave and flame front induced detonation in a rapid compression machine, Shock Waves 28 (2018) 1109-1116.
- Han W, Gao Y, Law CK. Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: An integrated mechanistic study. Combustion and Flame. 2017, 176:285-98.
- Han WH, Huang J, Du N, Liu ZG, Kong WJ, Wang C. Effect of Cellular Instability on the Initiation of Cylindrical Detonations. Chinese Physics Letters. 2017, 34(5):054701.
Created: Mar 11, 2018 | 09:01
机油液滴是发动机超级爆震的主要早燃源,对单个液滴的蒸发与着火过程的研究有助于探明液滴诱发早燃的机理,提供消除早燃源的方法。因此,本课题组建立了基于快速压缩机研究液滴蒸发与着火过程的实验方法。
1.常压高温条件下液滴蒸发与着火过程
常压高温条件下,机油液滴将经历较长的吸热时间,同时,其中的轻组分会率先蒸发并引发液滴表面微爆、形成燃油蒸气的周期性喷发。机油液滴火焰面形成于较远位置,这是由于轻组分喷发并扩散至周围环境导致的。

2.高温高压条件下液滴蒸发与着火过程
在快速压缩机中使用微米级石英丝挂滴方法,借助高速相机和长工作距离显微镜,能够很好地捕捉液滴蒸发与着火过程。在着火过程中,由于温度上升,机油表面张力及粘性下降,出现了液滴分离的现象,液滴着火后,进而引燃周围可燃混合物气。

3.大气环境中异辛烷液滴蒸发过程
本课题还开展了常温常压下,燃料(异辛烷)液滴蒸发过程的研究。实验结果可供验证液滴蒸发数值模型的准确性,同时提供与机油液滴的对照。

液滴蒸发过程数值模拟
针对机油液滴蒸发过程建立了多组分瞬态一维液滴蒸发数学模型,描述液相、气相与相界面热力学、动力学过程,可分析液滴内部温度、组分浓度、液滴半径与寿命等随时间及环境条件的变化过程。下图显示高温高压环境中液滴温度随半径的分布,同时随时间的变化。
模拟计算所用数学模型如下:
气相过程:


液相过程:


相平衡:


下列结果为液滴内部温度分布:

代表性论文:
- Shubo Fei, Yuliang Qi, Yanfei L, Zhi Wang, et al. The Finite Heat Conduction Model of Single Droplet Combustion and its Verification. 26th ICDERS. 2017, Boston, MA, USA.
- 费舒波,齐运亮,李雁飞,张会强,王志. 高温高压环境下机油液滴蒸发特性数值模拟. 内燃机学报. 2018.
- Shubo Fei, Zhi Wang, Yunliang Qi, Yingdi Wang, Huiqiang Zhang. Ignition of a Single Lubricating Oil Droplet in Combustible Ambient Gaseous Mixture under High-Temperature and High-Pressure Conditions. Combustion Science and Technology. 2018.
- Shubo Fei, Zhi Wang, Yunliang Qi, Yingdi Wang. Investigation on Ignition of a Single Lubricating Oil Droplet in Premixed Combustible Mixture at Engine-Relevant Conditions. SAE Technical Paper. 2019-01-0298.
- Shubo Fei, Yingdi Wang, Yunliang Qi, Zhi Wang, Huiqiang Zhang. Investigation on explosion of lubricating oil droplet during combustion of ambient gaseous mixture under high pressure and temperature conditions. 15th International Conference on Flow Dynamics. 2018. Sendai, Miyagi, Japan.
Created: Mar 11, 2018 | 09:32
宽馏分燃料的多组分简化机理
三维CFD耦合化学反应动力学机理来计算燃烧过程和排放物生成逐渐成为主流,但受限于计算成本,详细反应机理仍然难以广泛运用,往往都是使用骨架机理、简化机理。
由于宽馏程多组分燃料包含了从汽油到柴油馏程的蒸馏产物,因此新型燃料包含了烷烃、烯烃、环烷烃和芳香烃等不同类型的碳氢分子,其分子量也在较大范围内分布,需要用合适的多组分模型来表征。该化学动力学模型包含了正庚烷、异辛烷、甲苯、正十烷、正十二烷、正十六烷、二异丁烯、环己烷、甲基环己烷、乙醇和甲醇等11种常用表征燃料的子机理模型,这些组分涵盖了直链烷烃、支链烷烃、环烷烃、芳香烃、烯烃和醇类等6种燃料种类。该多组分简化机理仅有178种反应物和758步反应,还内嵌了NOx和PAH预测子机理,其中PAH子机理能够预测从小分子到碳烟前驱物A4的构建和形成过程。

该机理能够很好地预测单一燃料、混合燃料、表征燃料和实际燃料的滞燃期、层流火焰速度等表观参数,同时对关键中间产物浓度也能很好复现。


PODE详细机理
聚甲氧基二甲醚PODE具有高着火性和高含氧量的特点,是新燃料的重要组成部分,也是目前的国际研究热点。清华大学基于电子结构理论和密度泛函理论开发了国际上首个PODE详细化学动力学模型(225反应物,1082步反应:同时包含低温和高温反应)。进一步采用DRGEP、敏感性分析和同分异构体合并等方法对PODE详细机理进行简化,并将PODE简化子机理加入上述宽馏程多组分燃料化学动力学模型中,实现了对PODE掺混燃料的三维数值仿真模拟。PODE详细机理CBS-QB3理论势能面分析及简化机理反应路径如下所示。


为了理解PODE降低碳烟排放的微观机制,通过以官能团距离(两官能团间相隔化学键的个数)为自变量的指数递减函数来表征官能团之间的相互作用,建立了一种基于距离的自动化且自适应的官能团贡献(DBGC)方法,精确预测大分子热力学性质。PODE分子结构和燃烧化学反应途径如下图所示。

科学意义在于揭示了C-O-C键含氧燃料无烟燃烧的机理,即PODE燃料中没有直接相连的C-C键,燃料的氧化过程与常规碳氢燃料不同:1)在高温的beta-scission反应中,常规碳氢燃料会对应生成烯烃和自由基,而PODE会对应生成醛类和自由基。2)在低温的RO2反应中,常规碳氢燃料有两条主要转变路径,即生成“QOOH”或“烯烃和HO2”,而PODE的C-O-C交替结构保证了O-O官能团的beta位上没有氢原子,无法生成烯烃和HO2。PODE的氧化过程中,难以生成乙烯、乙炔等碳烟的重要前驱物,从而降低碳烟,使得PODE实现清洁燃烧。
燃料分子热力学性质预测新方法(DBGC)
官能团贡献(DBGC)方法是一种以官能团距离(两官能团间相隔化学键的个数)为自变量的指数递减函数来表征官能团之间的相互作用为思想基础的自动化且自适应的燃料分子热力学性质预测方法。DBGC方法的框架如下所示。

通过这种定义,即可以从任一个主流三维分子构图软件绘制的仅包含原子键连关系的草图中得到一系列反映每种基团的数量和基团间相互作用的标量数字。这些数字在DBGC方法中被打包成为图中所示的基团贡献向量,其将被作为输入向量传递给基团贡献算法,从而得到最后的输出值,即预测的标准生成焓。

以异丁烷为例定义的基团距离
此基团贡献向量的生成方法已经完全用计算机代码实现,并开源提供给后续研究者。在整个计算过程中,无需精确的几何优化结构,仅仅草图级别的分子结构即已足够。并且如邻位交叉效应,1,5-相互作用等传统GA(group additivity)方法中需要的预定义相互作用形式,在此方法中也不再需要。对于一族包含N中不同类型基团的分子而言,基团贡献向量的维度是N×(N+3)/2,即N个代表每种基团数量的元素和N×(N+1)/2个代表各类基团间相互作用的元素。在实际应用中,不需要每个分子都具有全部的N种基团,如果某种基团并不存在于此分子中,则基团贡献向量中与此基团相关的元素即为0。不管分子结构有多复杂,只要基团种类的总数目确定,基团贡献向量的维度就是定值。这是DBGC方法区别于传统GA方法之处,在传统GA方法中,每出现一种新的子结构,可能就需要添加一种相应的校正项来描述此子结构。
代表性论文:
- Tanjin He, Shuang Li, Yawei Chi, Hong-Bo Zhang, Zhi Wang, Bin Yang, Xin He, Xiaoqing You. An adaptive distance-based group contribution method for thermodynamic property prediction. Physical Chemistry Chemical Physics, 2016, 18:23822-23830.
- Shuojin Ren, Sage L Kokjohn, Zhi Wang, Haoye Liu, Buyu Wang, Jianxin Wang. A multi-component wide distillation fuel (covering gasoline, jet fuel and diesel fuel) mechanism for combustion and PAH prediction. Fuel, 2017, 208:447-468.
- Tanjin He, Zhi Wang et al. A chemical kinetic mechanism for the low- and intermediate-temperature combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3). Fuel, 2018, 212:223-235
- Tanjin He, Hao-ye Liu, Yingdi Wang, Boyuan Wang, Hui Liu, and Zhi Wang. Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether. SAE 2017-01-2336
- Li Li, Jianxin Wang, Zhi Wang et al. Combustion And Emissions Of Compression Ignition in a Direct Injection Diesel Engine Fueled with Pentanol. Energy 2015 (80):575-581.
- Li Li, Jianxin Wang, Zhi Wang et al. Combustion And Emission Characteristics of Diesel Engine Fueled with Diesel/Biodiesel/Pentanol Fuel Blends. Fuel 2015(156):211-218.
- Haoye Liu, Zhi Wang, Jun Zhang, et al. Study on combustion and emission characteristics of PODE/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy 2017, 185: 1393-1402.
- Jianxin Wang, Fujia Wu, Jianhua Xiao, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions.
- Zhi Wang, Li Li, Jianxin Wang. Effect of Biodiesel Saturation on Soot Formation in Diesel Engines. Fuel,2016,175:240-248.
- Zhi Wang, Haoye Liu, Xiao Ma, Jianxin Wang, Shijin Shuai, Rolf D. Reitz. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel, 2016, 183: 206–213.
- Haoye Liu, Zhi Wang, Jianxin Wang, Xin He, Yanyan Zheng, Qiang Tang. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Energy, 2015, 88: 793-800.
- Haoye Liu, Xiao Ma, Bowen Li, Longfei Chen, Zhi Wang, Jianxin Wang. Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel, 2017, 209:62-68.
- Tanjin He, Haoye Liu, Yingdi Wang, Boyuan Wang, Hui Liu, Zhi Wang. Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether. SAE Technical Paper 2017-01-2236, 2017.
- Z. Wang, F. Li, and Y. Wang. "A generalized kinetic model with variable octane number for engine knock prediction." Fuel 188(2017):489-499.
Created: Mar 27, 2018 | 13:48
燃料高温高压条件下的化学反应动力学机理的实验验证平台主要包括激波管(ST)、流动反应器(FR)、射流搅拌反应器(JSR)和快速压缩机(RCM),这些反应器的工作范围如下。实际发动机中的燃烧过程,存在燃料的低温反应,以及负温度系数(NTC)效应的影响,且压力较高,快速压缩机作为研究手段最为合适。

本快速压缩机,THU-RCM,工作范围为上止点压力10~50 bar, 上止点温度600~1200 K,压缩比6~18。已经在燃料的着火延迟时间方面提供了大量数据,包括烷烃、环烷烃、烯烃、PODEn、醇酮以及PRF混合物。下图比较了不同快压机对当量比的正丁烷/空气混合气的着火延迟时间测量结果。

通过基于快速压缩机的采样系统,还能够获得燃烧中间过程部分中间组分的定量信息, 意味着不仅可以从宏观参数(如着火延迟)优化和约束反应机理,还能从基元反应、反应速率的角度提供更多约束。

利用中间产物的浓度和反应敏感性分析可以推导并优化基元反应速率,以此建立了一种用于测定基元反应速率的实验方法,下图所示的CO浓度成功优化了甲酸甲酯的分解反应速率:CH3OCHO=>CH3OH+CO。

代表性论文:
- H. Di, X. He, P. Zhang, Z. Wang, M.S. Wooldridge, C.K. Law, C. Wang, S. Shuai, J. Wang, Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane, Combustion and Flame 161 (2014) 2531-2538.
- W. Ji, P. Zhang, T. He, Z. Wang, L. Tao, X. He, C.K. Law, Intermediate species measurement during iso-butanol auto-ignition, Combustion and Flame 162 (2015) 3541-3553.
- P. Zhang, W. Ji, T. He, X. He, Z. Wang, B. Yang, C.K. Law, First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation, Combustion and Flame 167 (2016) 14-23.
- Y. Wang, Y. Li, Z. Wang, X. He, Hydrogen formation from methane rich combustion under high pressure and high temperature conditions, International Journal of Hydrogen Energy 42 (2017) 14301-14311.
Created: Mar 11, 2018 | 09:16
预燃室点火
随着天然气发动机的日渐增多,由于其燃烧速度慢,起燃极限窄,燃烧特性亟待优化,以满足日益严苛的能耗法规。预燃室点火可以有效解决这一问题,其思路是将缸内燃烧空间划分为预燃室和主燃室两部分,火花塞布置在预燃室内,在一个燃烧循环中,首先由火花塞点燃预燃室内的混合气,随后火焰在发展后通过连接预燃室与主燃室的喷孔产生射流,从而在主燃室内提供空间分布的点火源,引燃可燃混合气,加速燃烧过程。

通过快速压缩机实验可以看到,受预燃室喷孔直径影响,预燃室的引燃作用呈现两种模式:1)射流火焰单阶段燃烧;2)火焰淬熄两阶段燃烧。其中前者直接从预燃室喷射火焰引燃主燃烧室,能一定程度加快燃烧;后者预燃室无火焰释放,但在下游会引发混合气自燃,放热更集中,燃烧持续期更短,但着火位置与滞燃期不稳定,较难控制。
3.0 mm孔径
1.6 mm孔径
火焰加速腔射流点火
加快火焰传播速度,从而改善点燃式天然气发动机燃烧的另一途径是使用火焰加速腔道,形成湍流射流火焰进入主燃烧室,缩短滞燃期和燃烧持续期的同时还能提高燃烧稳定性。下图是在快速压缩机上设计的包含扰流板的火焰加速腔以产生射流。

相比于传统火花点火(CSI),火焰加速腔射流点火(FAI)能够提高燃烧速度一倍以上。从燃烧效率的角度也有所提升。


代表性论文:
- Wang Boyuan, Wang Zhi, Liu Changpeng, et al. Experimental Study of Flame Accelerated Ignition on Rapid Compression Machine and Heavy Duty Engine. SAE Technical Paper 2017-01-2242, 2017
Created: Mar 27, 2018 | 19:47
随着碳排放要求的日益严苛,汽车动力呈现多元化趋势,电动比例日渐提高。混合动力要求高效汽油机与电驱动耦合,这意味着对混动专用发动机,即极限热效率高效发动机的需求。其中,突破传统汽油机的压缩比与稀燃极限是关键。马自达发布的创驰蓝天计划,已经实现了超高压缩比的稀薄燃烧(SKYACTIV-X几何压缩比18),其中的核心问题即高压缩比稀薄燃烧条件下,发动机既不爆震也不失火。
迄今的新型燃烧技术研究包括预燃室、高能点火等方法都在实际运用中遇到了瓶颈,而对于稀薄燃烧图谱本身,尚未足够认识清楚。通过可视化快速压缩机,在18压缩比,稀燃条件下,观察到异辛烷的不同火焰传播与自燃模式,覆盖了当量比0.3~0.7,上止点压力15~40 bar,上止点温度700~950 K,下图展示了不同当量比的火焰传播与自燃模式。

代表性论文:
- Fan, Q., Wang, Z., Qi, Y., Wang, Y. et al., "Experimental Study of Lean Mixture Combustion at Ultra-High Compression Ratios in a Rapid Compression Machine," SAE Technical Paper 2018-01-1422, 2018.
- Fan, Q., Qi, Y., and Wang, Z., "Effect of Thermodynamic Conditions on Spark Ignition to Compression Ignition in Ultra-Lean Mixture Using Rapid Compression Machine," SAE Technical Paper 2019-01-0963, 2019.
Created: Mar 27, 2018 | 19:14
HCCI模式NOx和Soot排放低但压升率高;柴油机扩散燃烧放热过程容易控制但NOx和Soot排放高;PPCI模式试图在两个极端之间寻求折中平衡。这三种国际上已有的先进压燃模式仍未打破碳烟-NOx-热效率-压升率四者间的此消彼长关系。而多次预混压燃(Multiple Premixed Compression Ignition,MPCI)模式,通过每次压燃过程燃油和空气充分混合,解决了最大压力升高率和燃烧噪声高的问题,实现缸内压力升高过程和污染物生成过程的解耦,获得发明专利。


汽油压燃(HCCI, SCCI, PPCI)存在着燃烧放热过程的可控性和燃油经济性之间的耦合关系,汽油MPCI模式未牺牲燃油经济性,发明点是峰值燃烧温度低,且高温区域集中在燃烧室中部,降低传热损失,实现了燃烧放热可控性和燃油经济性之间的解耦。
MPCI燃烧的核心学术思想是:分时燃烧避免出现两次燃烧叠加从而导致大规模集中放热的情况,并且实现燃烧分段;分区燃烧则是为了使第二次喷入的燃油避开第一段预混压燃结束之后的“活性热氛围”,也就是避开第一段燃烧之后高温已燃废气。汽油MPCI模式的第一段低温预混压燃发生在燃烧室外围区域,第二段高温预混压燃发生在燃烧室凹坑的中间部分。汽油MPCI和柴油机多次喷射在浓度-温度图上具体的燃烧路径如下。

专利: 王志,王步宇,等.ZL201410742566.1
代表性论文:
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. High Efficiency and Low Pollutants Combustion: Gasoline Multiple Premixed Compression Ignition (MPCI). SAE Technical Paper (2012).
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Fuel Octane Effects on Gasoline Multiple Premixed Compression Ignition (MPCI) Mode. Fuel, 2013, 103:373-379.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Parameter Study of Common Rail Pressure for Low Octane Gasoline Multiple Premixed Compression Ignition (MPCI) in Light-duty Diesel Engine. Journal of Automobile Engineering, 2013, 227(2):272-280.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Gasoline Multiple Premixed Compression Ignition (MPCI): Controllable, High Efficiency and Clean Combustion Mode in Direct Injection Engines. International Journal of Automotive Technology, 2013, 14(1):19-27.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. New Premixed Compression Ignition Concept for Direct Injection IC Engines Fueled with Straight-run Naphtha. Energy Conversion and Management, 2013, 68:161-168.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Comparative Study of Low Octane Gasoline Multiple Premixed Compression Ignition and Conventional Diesel Combustion. Combustion Science and Technology, 2013, 185(4): 564-578.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Performance of Straight-run Naphtha Single and Two-stage Combustion Modes from Low to High Load. International Journal of Engine Research, 2013, 14(5): 469-478.
- H.Q. Yang, S.J. Shuai, Z. Wang, et al. Effect of Injection Timing on PPCI and MPCI Mode Fueled with Straight-run Naphtha. Journal of Engineering for Gas Turbines and Power, 2013, 136(3): 031501.
- H.Q. Yang, Z. Wang, S.J. Shuai, et al. Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode. Applied Energy, 2015, 150: 150-160.
- Wang Buyu, Wang Zhi, Shuai Shijin, et al. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range. Energy Conversion and Management. 2014, 88(12):79-87.
- Wang Buyu, Wang Zhi, Shuai Shijin, et al. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines. Applied Energy. 2015, 160:769-776.
- Wang B, Yang H Q, Shuai S J, et al. Numerical resolution of multiple premixed compression ignition (MPCI) mode and partially premixed compression ignition (PPCI) mode for low octane gasoline. SAE Technical Paper, 2013.
- Wang B, Shuai S J, Yang H Q, et al. Experimental Study of Multiple Premixed Compression Ignition Engine Fueled with Heavy Naphtha for High Efficiency and Low Emissions. SAE Technical Paper, 2014.
- Wang B, Wang Z, Shuai S J, et al. Investigations into Multiple Premixed Compression Ignition Mode Fuelled with Different Mixtures of Gasoline and Diesel. SAE Technical Paper, 2015.
- Wang B, Wang Z, Shuai S, et al. Extension of the Lower Load Limit in Dieseline Compression Ignition Mode. Energy Procedia, 2015, 75: 2363-2370.
- Kim K, Wang Z, Wang B, et al. Load expansion of naphtha multiple premixed compression ignition (MPCI) and comparison with partially premixed compression ignition (PPCI) and conventional diesel combustion (CDC). Fuel, 2014, 136: 1-9.
- Liu H, Wang Z, Li B, et al. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP). Fuel, 2016, 186: 639-647.
- Yu L, Shuai S, Li Y, et al. An experimental investigation on thermal efficiency of a compression ignition engine fueled with five gasoline-like fuels. Fuel, 2017, 207: 56-63.
Created: Mar 27, 2018 | 13:00
The Chinese 973 project No. 2013CB228404 "Low Temperature Combustion for Wide Distillation Fuel by Controlling of Mixing Rate and Reaction Rate", proposed to improve emissions with oxygenated wide distillation fuel: combining the advantage of gasoline and diesel fuel, blending high-volatilility low-carbon component with high-ignitability high-carbon component, can increase air-fuel mixing rate and control combustion rate. By adding oxygenated fuel, combustion and emission characteristics can be further improved. Meanwhile, the energy conversion efficiency of gasoline is also increased.

By using oxygenated fuel(coal based fuel: Polyoxymethylene dimethyl ethers, PODEn/DMMn; biofuel: pentanol) to temper gasoline and diesel blends, WDF exhibits high volatility, high ignitability and high oxygen content, leading to low soot emissions. By combining low temperature combustion reducing NOx, the trade-off between NOx and soot emissions is broken, soot emissions are reduced by 90-99%, and NOx emissions are reduced by 90%. By further combining oxygenated WDF and spatially-seperated premixed compression ignition mode, fuel combustion occurs in different regions of the combustion chamber, breaking down the trade-off between thermal efficiency and pressure rise rate. Fuel consumption can be reduced by 5-10% under similar pressure rise rate.

Representative articles:
-
Haoye Liu, Zhi Wang, Jianxin Wang, Xin He. Effects of gasoline research octane number on premixed low-temperature combustion of wide distillation fuel by gasoline/diesel blend. Fuel, 2014, 134: 381–388.
- Jianxin Wang, Zhi Wang, Haoye Liu. Combustion and emission characteristics of direct injection compression ignition engine fueled with Full Distillation Fuel (FDF). Fuel, 2015, 140: 561–567.
- Haoye Liu, Zhi Wang, Jianxin Wang. Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC). SAE Int. J. Fuels Lubr. 8(2):2015, doi:10.4271/2015-01-0810.
- Haoye Liu, Zhi Wang, Jianxin Wang, Xin He, Yanyan Zheng, Qiang Tang. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Energy, 2015, 88: 793-800.
- Haoye Liu, Zhi Wang, Jianxin Wang, Xin He. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy, 2016, 97: 105-112.
- Haoye Liu, Zhi Wang, Bowen Li, Jianxin Wang, Xin He. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP). Fuel, 2016, 186: 639-647.
- Haoye Liu, Xiao Ma, Bowen Li, Longfei Chen, Zhi Wang, Jianxin Wang. Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel, 2017, 209:62-68.
- Haoye Liu, Zhi Wang, Bowen Li, Shijin Shuai, Jianxin Wang. Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine Over Wide Load Range. SAE Technical Paper 2017-01-2265, 2017.
- Liu Haoye, Wang Zhi, Zhang Jun, et al. Study on combustion and emission characteristics of PODE/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy 2017, 185: 1393-1402.
Created: Mar 27, 2018 | 13:27
Hybrid technology is a significant method to save energy and reduce emissions. However, hybrid system mainly focuses on the development of electrical components and vehicle energy management while the engine used in the system is based on the conventional engine or its recalibration, which is not the real hybrid system. On the other hand, in order to further cut down the fuel consumption of the HEVs/PHEVs, advanced and innovative technology for engines is essential. Therefore, forward development of dedicated hybrid engines matching with the vehicle configuration and optimization of engine itself play an important role in meeting the requirement of longer term fuel consumption and emission regulations.

The premise of forward development of dedicated hybrid engines is to learn about the characteristics and control strategy of advanced hybrid engines around the world. Currently, based on the method called THU-CPS, the strategies of spray, spark, start-stop, and engine roles in the powertrain have been analyzed in detail, which is the significant reference for developing the control strategy of dedicated hybrid engines.


Created: Jun 09, 2018 | 22:26