联系我们
意见反馈

关注公众号

获得最新科研资讯

丁凡实验室

简介 我们对脚下土壤的了解,远不及对浩瀚的天体运动了解得多

分享到

GCB文章:化学计量学二元混合模型来揭示矿质结合态有机质中植物源和微生物源的贡献

缘起

土壤矿质结合态有机质(MAOM)是陆地生态系统中最大的土壤碳库之一。和一般的有机碳库不同,它通过各种物理化学作用与土壤黏/粉粒紧密结合,周转较慢,是相对惰性的碳库,因此其在土壤碳固存方面的重要性不言而喻。有机质存在两个来源,植物源(陆源)和微生物源。植物源是指这部分有机质主要是植物破碎分解产生的,主要携带了植物的诸多特征,比如木质素、纤维素等,一般来说碳氮比较大,分子质量较高;而微生物源主要是植物被微生物直接吃掉继而形成微生物死体(Microbial necromass),所以微生物源的有机质分子质量较小,比如氨基酸、多糖、脂类等,与土壤结合后相对植物源有机质可能更难分解。中科院沈阳生态所梁超曾将这两种路径总结为微生物的胞外修饰和胞内周转,并借鉴海洋碳泵理论提出了土壤中的微生物碳泵概念(Liang et al., 2017, Nature Microbiology)。

厘清这两种来源对MAOM的相对贡献是多少以及影响相对贡献的环境因素是什么对于管理和模拟土壤碳对环境变化的响应至关重要,这将有助于我们进一步对全球变化下的碳循环过程进行建模和预测,也有利于陆地生态系统碳管理和决策。当前土壤有机质领域的研究者普遍认为,MAOM主要来源于微生物残体,植物源贡献较低。想想粉黏粒具有的超大比表面积和遍布的吸附位点,故而应该能结合大量的小分子化合物形成有机无机复合体,这种观点自然获得大多数拥趸。然而,这种认识缺乏令人信服的定量证据。微生物生物标识物,特别是氨基糖,是用于估计微生物与植物对MAOM贡献的主要方法,但是这种方法也存在不足,比如:氨基糖仅为微生物细胞壁的组成成分,利用氨基糖标识物转化微生物残体的转化系数是在室内纯培养条件下获得的,这种转化系数在实际环境中存在较大不确定性,进而会导致依据此系数计算微生物残体的数量估算变异较大。另如,分子指纹图谱方法,包括核磁共振、py-GC/MS等等,也存在一些问题(Whalen et al., 2017, Global Change Biology)。因此,亟需其他独立的证据来研究MAOM中,植物与微生物对MAOM的相对贡献。

化学计量学是一个古老而年轻的话题。从无机化学到经济计量学,许多事物都存在着规律的计量关系,在生态学中亦是如此。例如,经典的海洋浮游生物Redfield 比值C:N:P稳定在106:16:1,营养级之间的能量比约为1:10,土壤碳氮比总在10:1~12:1之间徘徊,无不令人着迷。笔者导师,也是文章的通讯作者丁凡副教授在土壤-作物化学计量学领域深耕多年,摸清了长期施肥-覆膜等农艺措施对土壤元素周转和玉米养分吸收的C:N:P化学计量关系, 并最早在2018年产生了利用化学计量学解决植物源与微生物源对MAOM贡献难题的想法,假设:如果能证明MOAM的C/N等于微生物C/N,就证明了MAOM中微生物源的主导地位。

耕耘

说干就干,我们首先假设微生物生物量C/N与微生物残体的C/N接近,假如MAOM和微生物生物量的C/N无明显差异,则支持MAOM主要是由微生物残体形成的假设。若两者差异显著,则说明MAOM不仅来源于微生物残体,还来源于植物残体。我们也假设以POM代替植物残体C/N,因为若植物残体可以进入MAOM,首先形成颗粒有机质(POM,由未分解或半分解的植物残体组成)(图1)。借鉴同位素混合模型的思想(公式1),我们利用POM(植物残体)和微生物生物量(微生物残体)的N丰度(N/(C+N))作为端元,去定量微生物和植物残体对MAOM的贡献(f)(公式2,图1)。

 

fδB+(1-f)δA=δ        (公式1)

f × [N/(C+N)]Microbe + (1-f) × [N/(C+N)]POM = [N/(C+N)]MAOM     (公式2)

 

两个公式是不是很像?这里的N就类似稳定碳同位素计算外源碳占比里的13C数量,而C就相当于12C的数量。多么奇妙,但过程充满许多风险。一个典型例子是,有的人可能会问,为什么不用C/N,而用N/(C+N)表示呢?实际上我们一开始也是直接用的C/N,直到一位合作者——耶鲁大学的Mark Bradford教授提出用氮丰度可能更好一些。为什么会这样?我们经过推导发现,第一个公式的基础是建立在13C<<12C的条件上才成立的,但我们的C和N的差异不算大,如果用原来的思路会产生偏差!所以至此,我们的基础理论得以完善。

 

图1. 利用POM和微生物生物量组分氮丰度(N/(C+N))作为端元定量植物和微生物对MAOM贡献的示意图及一个示例

 

收获

有了明确的方向,我们的工作较为顺利(PS:数据收集和分析过程中仍面对很多问题),利用学术谷歌和Web of Science,最终搜集到了36篇同时报道了POM、MAOM和微生物生物量C/N的文章,并搜集其对应的气候(年均温、平均降水量)和土壤(黏粒含量、pH、SOC、总氮、土壤C/N)因子,共获得了288组数据。通过对比MAOM和微生物生物量的C/N的差异,我们发现MAOM的C/N显著高于微生物生物量,并介于POM和微生物生物量之间(图2),且MAOM与POM和微生物生物量之间存在显著的正相关关系(图3)。这些结果表明微生物残体不是MAOM的单一来源,而是由植物和微生物残体共同形成的。

综合不同生态系统、土壤类型和土层深度,微生物残体对MAOM的贡献在34-47%之间,而植物残体对MAOM的贡献在53-66%之间,森林和农田中的微生物贡献高于草地生态系统(图4a, 5c)。微生物残体对MAOM的贡献随土层深度的增加而增加(图4b, 5b,d)。随机森林分析发现,黏粒含量是影响微生物残体对MAOM贡献的首要因子(图6),表明微生物残体对MAOM形成的贡献可能在黏土和壤土中尤为重要。

 

图2. 总数据集 (a), 森林 (b),草地 (c),农田 (d)中POM,MAOM以及微生物生物量碳氮比的比较

 

图3. 总数据集 (a), 森林 (b),草地 (c),农田 (d)中MAOM与微生物(红色点),MAOM与POM(蓝色点)C/N之间的回归关系

 

图4. 不同生态系统和土层中微生物残体对MAOM贡献 (不考虑DOM对植物源MAOM的直接贡献)

 

图5.假设DOM对植物源MAOM的直接贡献分别为10% (a, b)和50% (c, d)时,不同生态系统(a, c)和土层(b, d)中微生物残体对MAOM贡献

 

图6. 气候和土壤性质对微生物对MAOM贡献的相对重要性的随机森林分析

 

结语

化学计量学方法的结果表明,在不同的生态系统背景下,微生物输入占MAOM的比例不超过50%。虽然我们的研究结果仍然强调微生物残体是MAOM的重要组成部分,尤其是在深层和黏粒含量高的土壤中,但它挑战了日益流行的微生物残体是MAOM的主要组成部分的观点。这一结果还强调未来仍需要其他独立的证据来定量区分植物和微生物对MAOM的贡献。虽然每种方法都有其局限性,但设计一套互补的方法(比如同时利用不同的生物标识物、同位素、C/N、化学组成等数据去定量同一土壤样本中微生物残体对MAOM的贡献)以便对植物和微生物对MAOM的贡献进行可靠的估计是至关重要的。这样的理解将有助于推进土壤有机碳动态的更可靠的理论阐释以及预测它们对气候变化的响应。

该文于2023年11月14日以“A stoichiometric approach to estimate sources of mineral-associated soil organic matter”为题被生态学领域期刊Global Change Biology(5年影响因子12.3)接收。沈阳农业大学博士研究生常艺为第一作者,丁凡副教授和汪景宽教授为共同通讯作者,共同作者包括美国劳伦斯利弗莫尔国家实验室Noah W. Sokol助理研究员、英国埃克塞特大学Kees Jan van Groenigen副教授、美国耶鲁大学Mark A. Bradford教授、沈阳农业大学博士生吉德昌、瑞士苏黎世联邦理工学院Thomas W. Crowther教授、中国科学院沈阳应用生态研究所梁超研究员、美国康奈尔大学骆亦其教授和德国哥廷根大学Yakov Kuzyakov教授。

论文链接:https://onlinelibrary.wiley.com/doi/10.1111/gcb.17092

编辑 | 常艺、吉德昌

审核 | 丁凡

创建: Nov 22, 2023 | 10:25