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Deep Learning-Based Classification
of Hyperspectral Data

Yushi Chen, Member, IEEE, Zhouhan Lin, Xing Zhao, Student Member, IEEE,
Gang Wang, Member, IEEE, and Yanfeng Gu, Member, IEEE

Abstract—Classification is one of the most popular topics in
hyperspectral remote sensing. In the last two decades, a huge
number of methods were proposed to deal with the hyperspectral
data classification problem. However, most of them do not hierar-
chically extract deep features. In this paper, the concept of deep
learning is introduced into hyperspectral data classification for the
first time. First, we verify the eligibility of stacked autoencoders by
following classical spectral information-based classification.
Second, a new way of classifying with spatial-dominated informa-
tion is proposed.We then propose a novel deep learning framework
to merge the two features, from which we can get the highest
classification accuracy. The framework is a hybrid of principle
component analysis (PCA), deep learning architecture, and logistic
regression. Specifically, as a deep learning architecture, stacked
autoencoders are aimed to get useful high-level features. Experi-
mental results with widely-used hyperspectral data indicate that
classifiers built in this deep learning-based framework provide
competitive performance. In addition, the proposed joint
spectral–spatial deep neural network opens a new window for
future research, showcasing the deep learning-basedmethods’ huge
potential for accurate hyperspectral data classification.

Index Terms—Autoencoder (AE), deep learning, feature
extraction, hyperspectral data classification, logistic regression,
stacked autoencoder (SAE), support vector machine (SVM).

I. INTRODUCTION

B Y COMBINING imaging and spectroscopy technology,
hyperspectral remote sensing can get spatially and spec-

trally continuous data simultaneously. Hyperspectral data are
becoming a valuable tool for monitoring the Earth’s surface [1],
[2], and are used in a wide array of applications. An incomplete
list includes agriculture [3], mineralogy [4], surveillance [5],
physics [6], astronomy [7], chemical imaging [8], and environ-
mental sciences [9], [10]. A common technique in these applica-
tions is the classification of each pixel in hyperspectral data. If
successfully exploited, the hyperspectral data can yield higher
classification accuracies and more detailed class taxonomies

[11]. However, there are several critical problems in the classifi-
cation of hyperspectral data: 1) curse of dimensionality, because
of the high number of spectral channels; 2) limited number of
labeled training samples; and 3) large spatial variability of
spectral signature [12].

A lot of different classification methods have been proposed
to deal with hyperspectral data classification. Traditional
hyperspectral data classification methods use spectral informa-
tion only, and the classification algorithms typically include
parallelepiped classification, k-nearest-neighbors, maximum-
likelihood, minimum distance, and logistic regression [13]. The
majority of these above algorithms suffer a lot from the “curse
of dimensionality.” To deal with the high dimensionality
and limited training samples of hyperspectral data [14], some
dimensionality reduction-based classificationmethods were pro-
posed. Transformation is one method available to deal with high
dimensionality [15]–[17]. Band selection is another method
available to mitigate this “curse” [18]–[20].

In [21], a promising classification method, support vector
machine (SVM), is introduced for hyperspectral data classifica-
tion. SVM exhibits low sensitivity to high dimensionality and is
unlikely to suffer from the Hughes phenomenon [22]. In most
cases, SVM-based classifiers can obtain better classification
accuracy than other widely used pattern recognition techniques
[14], [22]. For a long time, these classifiers were the state-of-the-
art methods [23].

Spatial information has been growing more and more impor-
tant for hyperspectral data classification in recent years [30].
Spatial–spectral classification methods provide significant ad-
vantages in terms of improving performance [10]. To deal with
spatial variability of spectral signature, some recent approaches
try to incorporate spatial information into consideration [31]–[33].
In [32], the proposed method based on the fusion of morphol-
ogical information and original data followed by SVM provides
good classification results. In [33], a new classification frame-
work is proposed to exploit the spatial and spectral infor-
mation using loopy belief propagation and active learning. In
recent years, sparse representation-based methods have been
widely used in many fields. In [34], spatial–spectral kernel
sparse representation is proposed to deal with hyperspectral
data classification.

Considering the machine learning task of classification, clas-
sifiers like linear SVMand logistic regression can be attributed to
single-layer classifiers, whereas decision tree or SVM with
kernels are believed to have two layers [24]. As is confirmed
in neuroscience, human brains perform well in tasks like object
recognition because of its multiple stages of processing from
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retina to cortex [25]. Similarly, machine learning systems with
multiple layers of processing extract more abstract, invariant
features of data, and thus are believed to have the ability of
yielding higher classification accuracy than those traditional,
shallower classifiers. These deep architectures have been shown
to yield promising performance in many field including classifi-
cation or regression tasks that involve image [26], [27], [47],
language [28], and speech [29].

In this paper, we introduce deep learning-based feature
extraction for hyperspectral data classification for the first time.
Our work focuses on applying autoencoder (AE), which is one of
the deep architecture-based models, to learn deep features of
hyperspectral data in an unsupervised manner. Our methods
exploit single-layer AE and multi-layer stacked AE (SAE) to
learn shallow and deep features of hyperspectral data, respec-
tively. Furthermore, we propose a newway of extracting spatial-
dominated information for classification. At last, we propose a
novel classification framework dealing with joint spectral–
spatial information, which utilizes all of the features extracted
in the former two sections.

The rest of this paper is organized into six sections. Section II
is a description of deep learning, AE, and SAE models used in
this paper. In Section III, we focus on classifying with spectral
features, whereas Section IV details a new way of incorporating
spatial information by extracting spatial-dominated features. In
Section V, we further merge the former two spectral and spatial
approaches and propose a novel joint spectral–spatial deep learn-
ing framework, which yields the highest classification accuracy.
Experimental results are shown in Section VI. Section VII
summarizes the observations and completes this paper.

II. DEEP LEARNING, AE, AND SAE

A. Deep Learning

As early as 1989, the universal expressive power of three-layer
nets was proved via bumps and Fourier ideas [35]. The proof
showed surprisingly that any continuous function from input to
output can be implemented in a three-layer net, given sufficient
number of hidden units and proper nonlinearities in activation
function andweights. However, due to the lack of proper training
algorithms in early years, people could not harness this powerful
model until Hinton proposed his deep learning idea in 2006 [27].

Deep learning involves a class of models which try to hierar-
chically learn deep features of input data with very deep neural
networks, typically deeper than three layers. The network is first
layer-wise initialized via unsupervised training and then tuned in
a supervised manner. In this scheme, high-level features can be
learned from low-level ones, whereas the proper features can be
formulated for pattern classification in the end. Deep models can
potentially lead to progressively more abstract and complex
features at higher layers, and more abstract features are generally
invariant to most local changes of the input. According to some
recent papers [36], [37], deep models can give better approxi-
mation to nonlinear functions than shallow models.

Typical deep neural network architectures include deep belief
networks (DBNs) [38], deep Boltzmann machines (DBMs)
[39], SAEs [40], and stacked denoising AEs (SDAEs) [41].

The layer-wise training models have a bunch of alternatives
such as restricted Boltzmann machines (RBMs) [42], pooling
units [43], convolutional neural networks (CNNs) [44], AEs,
and denoising AEs (DAE) [40]. In this paper, we adopt one of
the above deep learning models, AE, for hyperspectral data
classification and choose SAEs as the corresponding deep
architecture.

B. Autoencoders

An AE has one visible layer of inputs, one hidden layer of
units, one reconstruction layer of d units, and an activation
function (Fig. 1).

During training, it first maps the input to the hidden layer
and produces the latent activity . The network correspond-
ing to this step is shown in the boxed part of Fig. 1 and is called an
“encoder.” Then, is mapped by a “decoder” to an output layer
that has the same size of the input layer, which is called
“reconstruction.” The reconstructed values are denoted as

. Mathematically, these two steps can be formulated as

where and denote the input-to-hidden and the hidden-to-
output weights, respectively, and denote the bias of hidden
and output units, and denotes the activation function.
Conventionally, the nonlinearity is provided in . There are
a lot of alternatives for such as sigmoid function, hyperbolic
tangent, and rectified linear function.

In our paper, the following constraint holds

We say that the AE has tied weights, which helps to halve
model parameters. Thus, we have three groups of parameters
remaining to learn: , , .

The goal of training is to minimize the “error” between input
and reconstruction, i.e.,

where is dependent on parameters , , while is given.
stands for the “error,”which can be defined in a variety of

Fig. 1. Single layer AE for hyperspectral data classification. The model learns a
hidden feature “ ” from input “ ” by reconstructing it on “ .” Corresponding
parameters are denoted in the network.
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ways. Thus, the weight updating rule can be defined as (where
denotes the learning rate)

After training the network, the reconstruction layer together
with its parameters are removed and the learned feature lies in the
hidden layer,which can subsequently be used for classification or
used as the input of a higher layer to produce a deeper feature.

The power of AE lies in this form of reconstruction-oriented
training. Note that during reconstruction, it only uses the infor-
mation in hidden layer activity , which is encoded as features
from input. If themodel can recover original input perfectly from
, itmeans that retains enough information of the input. And the
learned nonlinear transformation, which is defined by those
weights and biases, can be deemed as a good feature extraction
step. So, stacking the encoders trained in this manner minimizes
information loss. At the meantime, they preserve abstract and
invariant information in deeper feature. This is the reasonwhywe
choose AE to progressively extract deep features for hyperspec-
tral data.

C. Stacked AE

Stacking the input and hidden layers of AEs together layer by
layer constructs a SAE. The model is used to generate deep
features of hyperspectral data. Fig. 2 shows a typical instance of a
SAE connected with a subsequent logistic regression classifier.

The first AE maps inputs in 0th layer to a first layer feature in
first layer. It is trained using the same method introduced in
Section II-B. After we finish training the first layer AE, subse-
quent layers of AEs are trained via the output of its previous
layer. For example, although we are training the AE between the
second and third layer, we try to reconstruct the output of the
second layer according to the activity of the third layer. After this
layer of training, the decoder of the third layer AE is cast away

and only the input-to-hidden parameters are incorporated as
weights between the second and the third layer.

If the subsequent classifier is implemented as a neural network
too, parameters throughout the whole network can be adjusted
slightly while we are training the classifier. This step is called
fine-tuning. For logistic regression, the training is simply back
propagation, searching for a minimum in a peripheral region of
parameters initialized by the former step.

III. CLASSIFYING WITH SPECTRAL FEATURES

There exist some motivations to extract robust deep spectral
features. First, because of the complex situation of lighting in the
large scene, objects of the same class show different spectral
characteristics in different locations. For example, a lawn ex-
posed to direct sunlight shows different spectral characteristics
from a similar lawn eclipsed from the sunlight by a high building.
Also, scattering from other peripheral ground objects tilts the
spectra of the lawn and changes its characteristics too. Other
factors involve rotations of the sensor, different atmospheric
scattering conditions, and so on. According to these factors, the
probability distribution of a certain class is hard to be one-hot and
has variations overmultiple directions in the feature space. These
complex variations of spectra make it hopeless to analyze pixel
by pixel how they are affected by their tangent pixels in the
complicated real situation, thus they demand more robust and
invariant features. It is believed that deep architectures can
potentially lead to progressively more abstract features at higher
layers of feature, and more abstract features are generally
invariant to most local changes of the input [24].

To get more generally invariant features and tackle these
problems, a deep spectral feature of hyperspectral data can be
learned progressively layer by layer with the aforementioned AE
models. Generally speaking, we first compute features via a SAE
and deem them as the features of data, then construct a logistic
regression classifier on top of the neural network to finish the
classification phase. By adjusting different numbers of layers of
AEs, both shallow and deep features can be learned. Fig. 3 shows
a typical instance of the deep architecture used in our paper. The
training procedure will be detailed below.

A. Hierarchal Pretraining

The first stage is to learn a deep feature of spectra via
pretraining a SAE in a hierarchal manner, which is outlined in

Fig. 2. Instance of a SAE connected with a logistic regression layer. It has five
layers: one input layer, three hidden layers, and an output layer.

Fig. 3. Classifying with spectral feature. The classification scheme shown here
has five layers: one input layer, three hidden layers of AEs, and an output layer of
logistic regression. If we want to learn a shallower feature set, we just remove the
higher layers of AE.
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Section II-C. Here, we derive the detailed training criterion while
training an AE within each layer.

To get a nonlinear mapping, the activation function in
(1)–(2) is set to be a sigmoidal function in both the encoder and
decoder

Tied weights are used while training the AE. Thus, there
remain three groups of parameters to learn: , , and .

Before setting the updating rule for the weights, we need to
properly set the “error” rule—a cost function—first. There are a
lot of ways to define such a cost function for reconstruction.
Since sigmoid activation is used, the derivative tends to
asymptotically close to 0 as the output of the neuron draws near 0
or 1. If we use an ordinary cost like mean-square error, the
gradient of the cost will also suffer from the same problem,which
results in an unacceptably slow training speed. However, it can
be found from the following derivation that cross-entropy tends
to allow errors to change weights even when nodes saturate (i.e.,
outputs are close to 0 or 1.). So we always use cross-entropy
when activation is set to be sigmoidal.

In our implementation, the cost is actually computed on a
mini-batch of inputs since we adopt a mini-batch update strategy
for the large dataset

where denotes the input vector size and denotes the mini-
batch size. denotes th element of the th input (recon-
struction) in the mini-batch. The inner summation is over the
input dimension, whereas the outer is over a whole mini-batch.

We optimize (9) using the mini-batch stochastic gradient
descent method. We will now derive the partial differentials of
cost with respect to parameters , , and . First, we will
rewrite the reconstruction in a scalar form

where denotes the net input of the th hidden
(output) unit, given the th sample in the mini-batch.

It is explicit that the first-order and second-order derivative of
(8) are

Having deducted (10)–(12), we can compute the partial
derivatives of the reconstruction over parameters , , and

. To simplify notations, we still show these equations in a scalar
form

where means the weight connecting the th input and the th
hidden unit. stands for bias of the th unit in the hidden
(reconstruction) layer.

Putting them (10)–(17) all together, we have partial differ-
entials of cost (9) over parameters , and

Substituting them into (5)–(7), the weight updating rules are
determined.

After training the network, we remove the reconstruction layer
and deem the hidden activity to be the learned feature. Subse-
quent layers are trained in the same manner, but their inputs are
instead the outputs of their former layers. The SAE is thus
constructed with encoders layer by layer.

B. Fine-Tuning and Classification

To integrate the layers of neural networks and perform clas-
sification by utilizing the learned feature, we need tofine-tune the
whole pretrained network with a logistic regression classifier,
which uses soft-max as its output-layer activation. Soft-max
ensures the activation of each output unit sums to 1, so that we
can deem the output as a set of conditional probabilities. For
example, given input vector , which is an output of former
layers of AEs, the probability that the input belongs to category
equals

where and are weights and biases of the logistic regression
layer, and the summation is over all the output units.

The output-layer size is set to be the same as the total number
of classes, and the input has the same size as the dimension of
last-layer features. Since the logistic regression is implemented
as a single-layer neural network, it can bemergedwith the former
layers of networks to get a deep classifier. The fitting of the
classifier is conducted over the whole architecture, but with very
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slight learning rates on former layer AEs. Expressions for the
partial derivatives can be very complicated, but deducing them is
similar to those in Section III-A.

In a nutshell, the whole flowchart of the proposed SAE-LR
algorithm is as follows.

Algorithm 1: SAE With Logistic Regression (SAE-LR)

1. begin

2. initialize mini-batch size , pretraining epochs pt, pre-
training learning rate pl, fine-tuning epochs ft, fine-tuning
learning ratefl, number of layers and number of neurons
in each hidden layer n[d]. Input dimension , total
number of classes .

3. for every layer ( )

4. Construct an autoencoder with d_vis input neurons,
d_hid hidden neurons.

5. if is the first layer (i.e., )

6.

7. � �
8. Set input of the autoencoder to be initial data.

9. else

10. � � �
11. � �
12. Set input of the AE to be the output of its

former layer.

13. end

14. initializeAEweight matrix with random variables,
and biases and as zeros.

15. for every pretraining epoch

16. for every mini-batch

17. Compute reconstruction:

18. Compute cost:

19. Update weights using (18), with learning rate pl.

20. end

21. end

22. Cast away the reconstruction layer.

23. end

24. initialize logistic regression layer input neurons as n[d],
output neurons as .

25. for every fine-tuning epoch

26. for every mini-batch

27. Compute probability of each class according to (19).

28. Update weights from top layer to the bottom using
ordinary back propagation, with learning rate fl.

29. end

30. end

31. end

IV. CLASSIFYING WITH SPATIAL-DOMINATED FEATURES

Unlike other hyperspectral data spatial information extraction
methods which only use the four or eight tangent neighbors or
simple filtering, our deep framework takes all the pixels in a flat
neighbor region into consideration, and lets the AEs learn the
feature by itself. The overall flowchart of our proposedmethod is
detailed in Fig. 4.

We propose to take all voxels in a neighborhood region of a
certain pixel in the original data into consideration. Due to the
hundreds of channels along the spectral dimension, it always
has tens of thousands of dimensions. A large neighborhood
region will result in too large input dimension for the classifier,
containing too large amount of redundancy. So, in the first
layer, PCA is introduced to condense the whole image, to
reduce the data dimension to an acceptable scale and in the
meantime reserving spatial information. Since we mainly care
about incorporating spatial information in this method, we use
PCA along the spectral dimension and only retain the first
several principle components. The PCA transformation matrix
is fitted on the whole image, both for tagged and untagged
pixels. This step does cast away part of the spectral informa-
tion, but since PCA is conducted for pixel vectors, the spatial
information remains intact. Then, in the second layer, we
extract a neighborhood region of the pixel in this condensed

Fig. 4. Spatial-dominated information classification scheme. The first step of procesing is PCA compressing over spectral dimension, then after flatening the data, AEs
are introduced to extract layer-wise deep features.
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data, which has only several principle components in its
spectral dimension. This layer yields a total dimension of
several hundreds and that is acceptable.

After these processes, we “flatten” the data in the third layer,
i.e., stretch it to a 1-D vector, and feed it into a SAE.
Subsequent layers include a layer-wise training SAE and
fine-tune the whole model with logistic regression. These steps
are similar to the former subsection which deals with deep
spectral feature, and thus we will not repeat describing
them here.

The procedures that our algorithm consists of are detailed
below.

Algorithm 2: Classification With Spatial-Dominated Feature

1. begin

2. initialize neighborhood region size , number of principle
components , image height , width .

3. PCA transform the image.

4. Retain the first principle components. Thus we have an
image of size.

5. for each pixel

6. Crop a neighboring region for each point.

7. For those points near the edge that don’t have enough
surrounding pixels, fill in with its mirror.

8. Flatten the array into a vector of
size.

9. end

10. Concatenate all vectors to form a matrix .

11. Train a SAE-LRwith as the input. Training procedures
are the same to Algorithm 1.

12. end

V. JOINT SPECTRAL–SPATIAL CLASSIFICATION FRAMEWORK

In this section, we integrate the spectral and spatial-dominated
features together to construct a joint spectral–spatial classifica-
tion framework. The whole flowchart is shown in Fig. 5.

The spectrum of a pixel should first be taken into consider-
ation, since it contains the most important information for
discriminating different kinds of ground categories. For spatial
information, we extract the first several principle components
of a neighborhood region to get the spatial-dominated infor-
mation, which helps improve classification accuracy as verified
in Section IV. This procedure corresponds to the first three
steps of processing in Section IV (Fig. 4). These coefficients are
then concatenated to the spectrum of that pixel, forming a
hybrid set of features consisting of both spectral and spatial
information.

Following training and fine-tuning steps mentioned above,
we can eventually get class labels for each pixel. The whole

flowchart of this final framework is shown in the following
chart.

Algorithm 3: Joint Spectral–Spatial Classification

1. begin

2. Extract Spatial-dominated feature for each pixel according
to Algorithm 2 to form a matrix .

3. Scale into unit interval.

4. Normalize the whole initial image onto unit interval.

5. for each pixel

6. Add spectrumof each pixel on tail of each pixel’s feature
vector, (i.e., rows in ).

7. end

8. Train a SAE-LR with as the input. Training procedures
are the same to Algorithm 1.

9. end

VI. EXPERIMENTAL RESULTS

A. Data Description and Experiment Design

In our study, two hyperspectral datasets with different envi-
ronmental settings are used to validate our proposed methods.
They are the mixed vegetation site over Kennedy Space Center
(KSC), FL, USA, and an urban site over the city of Pavia, Italy.

The first study site lies around KSC, FL, USA (Fig. 6). The
image data was acquired by the National Aeronautics and Space
Administration (NASA) Airborne Visible/Infrared Imaging
Spectrometer instrument, on March 23, 1996. AVIRIS acquires
data in a range of 224 bands with wavelengths ranging from 0.4
to μ . The KSC data with has a spatial
resolution of 18 m. Given water absorption and low signal-to-
noise ratio (SNR) bands, 176 spectral bands are used for classifi-
cation with 48 bands discarded. 13 different land-cover classes
available in the original dataset are displayed in Table I.

Fig. 5. Joint spectral–spatial classification framework. Spectral and spatial
information are extracted separately via the former mentioned schemes, and
feature extraction is conducted via a deep architecture like SAEs. Final classifi-
cation is implemented as the final layer of the neural network, using classical
neural network classifiers like logistic regression.
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The second dataset is gathered by a sensor known as the
reflective optics system imaging spectrometer (ROSIS-3) over
the city of Pavia, Italy, with (Fig. 7). 115 bands
are collected in the μ range of the electromagnetic
spectrum. The high spatial resolution of 1.3 m per pixel aims to
avoid a high fraction of mixed pixels. In the experiment, some
bands have been removed due to noise; the remaining 103
channels are used for the classification. Nine land cover classes
are selected, which are shown in Fig. 7 and the numbers of
samples for each class are displayed in Table II.

In both images, we split the tagged parts of the image into three
sets, i.e., training, validation, and testing data, with a split ratio
6:2:2. That is, we randomly choose 60% of the tagged samples as
the training set, and 20% and 20% for the validation and testing
sets, respectively. During training, we use the training set to learn
weights and biases of each neuron and use the validation set to
tune the best super-parameters like hidden unit sizes or hidden
layer numbers. The test set is used to produce final classification
results. Thus, small classes will be trained and tested with a
smaller number of pixels in contrast with large classes.

Experiments were organized into four parts. The first aims at
analyzing the behavior of AEs, which are the building blocks of
our proposed methods. In the second experiment, the effective-
ness of deep architecture is tested in comparison to the SVM-
basedmethod. In the third part, we test the classification accuracy
of spatial-dominated features of hyperspectral data. Finally, the
effectiveness of joint spatial–spectral feature, which is the best of
all proposed models, is inspected.

In order to quantitatively compare and estimate the capabilities
of the proposed models, overall accuracy (OA), average accura-
cy (AA), and Kappa coefficient [45] are used as performance
measurement. In the experiments, we split the dataset into three
parts, i.e., training, validation and testing data, and apply cross-
validation analysis with the KSC and Pavia datasets [46].

To perform statistical evaluation, we conduct 100 independent
replications of the whole process and use the average Kappa
coefficient to compare the performance between different meth-
ods. As mentioned above, for each replication, the training,
validation, and testing data are randomly selected with a ratio
of 6:2:2. A paired t-test is performed to test whether the observed
increase in the mean Kappa coefficient is statistically significant
(at the level of 95%) [46].

Fig. 6. NASA data, KSC. Band 20 and corresponding ground truth areas
representing 13 land cover classes.

Fig. 7. ROSIS-3 data, Pavia, Italy. False-color composite (Band 5, 28, 56) and
representing nine land cover classes.

TABLE I
LAND COVER CLASSES AND NUMBERS OF PIXELS IN KSC DATASET

TABLE II
LAND COVER CLASSES AND NUMBERS OF PIXELS IN PAVIA DATASET

2100 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



B. AEs: Behavior and Analysis

Single layer AEs are basic building blocks of our proposed
models, so we investigate the behavior of AEs in this section
before we present classification accuracies of more complicated
models.

1) Reconstruction: First, we examine the quality of the
extracted features by checking the quality of the reconstructed
spectra.We use a single-layer AEwith 100 hidden units and train
it on the KSC dataset. It is shown that the AE do progressively
learn better reconstruction during training. Since the AE
restitutes a rather perfect reconstruction from hundreds of
iterating epochs (Fig. 8) and computing the reconstruction
need only the hidden activity (Section II-B), we can say that
the learned hidden activity retains enough information from the
input. Thus, it can be thought as a good feature set for the input
data.

2) Filters Learned: Suppose the dataset to be processed
has N spectral bands, we are using an AE with N input
neurons and H hidden neurons. The input-to-hidden layer of
an AE is fully connected, so every single hidden unit has its
connections to every input neuron. For each hidden unit, it has a
fan-in of N connections. The N connections as a whole can be
viewed as a “filter” since they behave by filtering away
information from some input which represent certain
wavelengths and at the same time exaggerating others. In this
way, an AE learning with H hidden units can be viewed as
learning with H such filters.

There is a convenient way of visualizing these filters. We
truncate the weight vector into pieces of equal length, and
vertically concatenate them to form a matrix M. So the matrix
M has N entries and for the whole network, we have H such
matrixes. Then, for each matrix M, we use the intensities of N
pixels of a tiny image patch which has the same size as M (called
“filter image”) to reflect the N connection. By plotting a filter
image for each hidden unit, we can observe some interesting
features of these learned filters more conveniently (Fig. 9).

Fig. 9(a) and (b) shows the filters acquired after training AE s
onKSCand Pavia datasets, respectively. Some hidden units have
large weights over a small portion of input units and small
weights over others, which suggest that a certain wavelength
interval is informative and discriminative and others’ weights
have more complex connecting patterns, having ripples over
different input units or showing Gaussian-like noises in some
bands. To make the visualization more direct, these 1-D con-
nections are horizontally folded into and pixels
corresponding with the 176 and 103 input sizes of the KSC and
Pavia data. That is why we find all filters are extracting “hori-
zontal” features in all of the plotted filter images. In Fig. 9(a),
there are 20 hidden units in the trained AE, thus we can see 20
tiny filter images in the plot. For the Pavia data, the situations are
similar [Fig. 9(b)], but with 60 hidden units.

3) Running Time: We concede that neural networks take
longer time to train compared with other machine learning
algorithms like KNN or SVM, and so does deep learning. In
this section, we focus on how the running time changes with
respect to the scale of AE model.

First, we inspect the training time. We use 3100 training
samples for each AE on a NVIDIA GT750M graphics card.
The pretraining epochs are set to be 5000, whereas fine-tuning
epochs are set to be 50 000. Experimental results [Fig. 10(a)]
show that training time generally growswith the increase of input
and hidden sizes. On the contrary, if we keep fix hidden size or
input size, training time grows proportionally with respect to
training epochs.

Fig. 9. Filter images learned by an AE on (a) KSC dataset and (b) Pavia dataset.
Each N-pixel tiny rectangle stands for N input-to-hidden weights that connects
each input unit to a same hidden unit. The intensity of each pixel stands for the
absolute value of corresponding weights.

Fig. 8. Reconstructions of a same input in different iteration epochs. (a) Input
spectrum. (b)–(f) Reconstructions of (a) in epoch 1, 10, 100, 1000, and 3500,
respectively. Vertical axis stands for normalized reflectance, whereas horizontal
axis stands for band numbers.

CHEN et al.: DEEP LEARNING-BASED CLASSIFICATION OF HYPERSPECTRAL DATA 2101



On the other hand, an advantage of deep learning algorithms is
that they are super-fast on testing. In Table III, an AE of hidden
size 20 on the KSC dataset and 60 on the Pavia dataset with
logistic regression is compared with radial basis function (RBF),
kernel SVM, linear SVM, and k nearest neighbors. We take all
314 368 pixels in theKSC dataset and 207 400 pixels in the Pavia
dataset for classification and compare the running time of all the
mentioned classifiers. Experiments in both the two dataset have
confirmed that AE runs much faster than other classification
algorithms in the control group.

4) Comparing With Other Feature Extraction Methods: By
comparing the AEs with other feature extraction methods,
involving principle component analysis (PCA), kernel PCA
(KPCA), independent component analysis (ICA), nonnegative
matrix factorization (NMF), and factor analysis (FA), we verify
the effectiveness of these AE features from the sense of
classification.

First, we substitute the AE in the SAE-LR scheme with these
feature extraction methods. All the logistic regression classifiers
are set to have learning rate 0.1 and are iterated on the training
data for 10 000 epochs. The SAE only consists of one layer of
AE. Experiments show that by combining with logistic regres-
sion, AE outperforms all other feature extraction methods and
gets the highest accuracy.

To be fair, we also combine the aforementioned feature
extraction methods with SVM to verify if AEs bring more
benefits for classification. Results show that although
logistic regression as a neural network tends to be more sensitive
to dimensions, AEs help improve the accuracies of both
classifiers. The only exception lies in the AE-SVM case, where
factor analysis outperforms AE with 20 extracted features
[Fig. 11(b)].

C. Classification With Spectral Feature

In Section VI-B, we have examined various characteristics of
AEs. In this part of experiment, we begin to exploit their potential
by applying them purely to spectral information. Here, we
mainly focus on the effect of depths in order to compare with
the typical classifier SVM.

Fig. 10. Factors influencing training time. (a) Training time of an AE with different hidden and input sizes. (b) Training time elapsed on each epoch whereas varying
hidden sizes. (c) Training time elapsed on each epoch whereas varying input size.

TABLE III
TESTING TIME COMPARISON

Fig. 11. (a) AE-LR and (b)AE-SVMperformancewith respect to hidden sizes on
theKSCdataset. Dashed lines stands for performance of the control group and the
red solid line stands for AE-basedmethods. Horizontal axis stands for the number
of features we extract in the control group and number of hidden units we use
while training an AE. In ICA, we choose the parallel fast ICA algorithm and use
initial whitening as the preprocessing step, and the maximum iteration step is set
to be 200. In NMF, we use the projected gradient method and we use RBF kernel
in KPCA.
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1) Effect of Depth: Depth plays an important role in the
classification accuracy because it determines the quality of
feature from various aspects like invariance and abstraction.
In Table IV, we tried several SAEs with different depths. For
the KSC data, it has 176 spectral channels and each hidden layer
size is set to 20, and also a logistic regression layer is used on
top of the SAE. So the neural networks are constructed as

. For the Pavia dataset which has 103
spectral channels and 9 classes, the performance reaches its
best when using 60 as the size of hidden layers. The neural
networks are like . “Depth” corresponds to the
number of 20 or 60-sized layers in the deep neural network.
Experiments show that depth does help to increase classification
accuracy. Note that in this part of experiment, the AE is not fully
tuned, with only 5000 epochs of pretraining and 50 000 epochs
of fine-tuning. If we continue training the model, it will yield
higher accuracies.

2) Comparison With SVMs: For comparison with the classical
SVM models, we conduct SVM with linear kernel, RBF-SVM
with PCA feature extraction, and SVM with RBF kernel on the
KSC and Pavia data. The SVM parameters are tuned to achieve
the best performance, as is the SAE-LR classifier. To elaborate,
the SAE-LR trained for KSC data has 20 hidden units and 1
hidden layer and is trained with 3300 epochs of pretraining and
400 000 epochs of fine-tuning with a very slight learning rate.
SAE-LR for the Pavia dataset is constructed similarly, but with 4
layers and 60 hidden units per layer.

We performed the experiments with same parameter settings
as described above 100. Table V shows the mean value of the
OA,AA, andKappa coefficients for the 100 replications.We can
see that out of all the methods in the control group, RBF-SVM
yields the highest accuracy in terms of mean OA. However, the
SAE-LR method turns out to be better than RBF-SVM on all
three measurements. It has shown a significant gain in accuracy

for both the KSC and Pavia datasets. Further, we performed the
paired t-test (as described in Section VI-A) between the trained
SAE-LR and the other three SVMmodels. The detailed statistics
of the Kappa coefficients of the four methods are shown in
Fig. 12. Paired t-test results show that improvements on Kappa
coefficients are statistically significant (at the level of 95%).

In the following sections VI-D and VI-E of experiments, we
will show that if spatial information is incorporated, classifica-
tion results will growmuch higher, and thus further exceed RBF-
SVM’s accuracy.

D. Classification With Spatial-Dominated Feature

If we directly apply SVM on the spatial-dominated informa-
tion collected by cropping adjacent patches, the accuracy will be
slightly higher than that yielded by spectral features (Table VI).
What is more, our deep neural networks confirm that these kinds
of features can lead to higher accuracy for classification in terms
of mean performance. We inspect our spatial information ex-
traction method by varying the number of retained principle
components and depth of neural network.

1) Differing Principle Components: Although the proposed
spatial-dominated method majorly focuses on extracting spatial
information of hyperspectral data, using how much spectral
information to retain still plays a role in the completeness of

TABLE IV
IMPACT OF DEPTH

TABLE V
CLASSIFYING WITH SPECTRAL FEATURES

Fig. 12. Box plot of Kappa coefficients of different methods on (a) KSC and
(b) Pavia datasets. Numbers in the abscissa corresponding to 1) SAE-LR;
2) Linear SVM; 3) PCA RBF-SVM; and 4) RBF-SVM. We plot these boxes
bydoing 100 independent replications. The red line through the center of each box
indicates the median value of the Kappa coefficients. The edges of boxes are the
25th and 75th percentiles.Whiskers extend to themaximumandminimumpoints.
Abnormal outliers shown as red “ ”s.
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its features. The amount of spectral information can be adjusted
by varying the number of principle components (i.e., the in
Algorithm 2). Here, we vary the retained principle components
from 1 to 8, and check how the final classification accuracy is
affected. In Fig. 13, an SAE-LR model with one hidden layer is
constructed. It shows that as the number of principle compo-
nents grows, the classification accuracies of both images become
higher. As a trade-off between accuracy and data size, we
empirically choose 4 as the number.

2) Effect of Depth: Depth also plays an important role in
spatial-dominated classification. We train a series of SAEs with
different depths, but with fixed principle component numbers
and hidden unit numbers to see how the depth of the features
effect classification accuracies. Results are show in Fig. 14.
Compared with spectral information, deeper features are required
for spatial-dominated information to get the best classification
accuracy. This helps us to determine howmany layers are needed
to get an optimal configuration of the network.

E. Joint Spectral–Spatial Classification Framework

This section of experimentation culminates all of our previous
methods. By putting both the spectral and spatial information
together to form a hybrid input and utilizing the deep classifica-
tion framework detailed in Section IV-B, we get the highest
classification accuracy we have ever attained.

1) Comparison With Spatial-Dominated Methods and
SVMs: Here, we compare joint spectral–spatial classification
with the aforementioned spatial methods.We also performRBF-
SVM on both to form a control group (Table VI). Similarly,
experiments are also performed for 100 times. Compared with

Table V, we can figure that for both the SAE-LR and RBF-SVM
methods, joint features yield higher accuracy than spectral
features in terms of mean performance, and while comparing
the two methods within each feature set, SAE-LR is more
precise. As in the last Section VI-E2, statistical evaluations of
Kappa coefficients are plotted as the left four boxes in Fig. 15(a)
and (b). We also performed paired t-tests between SAE-LRs and
their corresponding control group SVMs. The results have
shown that SAE-LR does achieve higher accuracy.

2) Comparing With Other Spatial Methods: Spatial infor-
mation is very important in hyperspectral data classification.
Some methods such as extended morphological profile (EMP)
try to integrate spatial information into spectral-based classifiers.
In the EMP method, principle components of hyperspectral data
are computed and then the morphological profiles are used to
extract spatial information on the first several components.
EMP followed by SVM is a successful spatial–spectral classifi-
cation method of hyperspectral data. We searched a range of
c and g configurations for the SVM used in the EMP RBF-
SVM method, and for the KSC data, they are configured as

and , whereas those in the Pavia data are ,
and performed 100 replications [the rightmost column in

Fig. 16(a) and (b)]. Paired t-tests also show that the joint
information-based SAE-LR does consistently reach a higher
accuracy than the EMP RBF-SVM.

3) Whole Image Classification: In this section, we examine
the classification accuracy from a visual perspective. We choose
the best SAE-LR models for the spectral, spatial-dominated,
and joint sets of information to classify the whole images of KSC
and Pavia. All parameters in these models are optimized. From

TABLE VI
SPATIAL-DOMINATED AND JOINT CLASSIFICATION OF SAE-LR AND SVM MODEL

Fig. 13. Effect of principle components.
Fig. 14. Effect of depth.
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the resulting images, we can figure out how the proposed
spatial-dominated information extraction method affects the
classification results. In Fig. 16, from both images, we can see
that spectral classification always results in noisy scatter points in
the image (left) and that spatial-dominated features correct this
shortcoming (middle). However, spatial-dominated features
have their own flaws. They misclassify certain small regions
like the shadow of the third line of buildings in the Pavia data.
Because of its window size, some details of targets are lost. This
can be found in the area of bare soil on the lower-right side of the
Pavia data. Results yielded by spatial-dominated features totally

lost the shape of the bare soil region, whereas for spectral results,
the shape is retained. Finally, for the joint classification, it gives
a satisfying trade-off. It retains the shape and detail of some
objects, while simultaneously eliminating noisy scattered points
of misclassification.

VII. DISCUSSION AND CONCLUSION

In this paper, we propose hyperspectral data classification
methods using deep features extracted by SAEs. It is shown that
AE-extracted features are useful for classification, and it helps to

Fig. 15. Box plot of Kappa coefficients of spectral, spatial-dominated and joint classification scheme on (a) KSC and (b) Pavia datasets. Numbers in the abscissa
corresponding to 1) SAE-LR on spatial-dominated information; 2) RBF-SVM on spatial-dominated information; 3) SAE-LR on joint information; 4) RBF-SVM on
joint information; and 5) EMP RBF-SVM. The meanings of the indicators in the box are the same as Fig. 12.

Fig. 16. Spectral (left), spatial-dominated (middle), and joint (right) classification results of the whole image on (a) KSC and (b) Pavia datasets. Results are generated
with learned SAE-LR models.
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increase the accuracy of SVM and logistic regression while
obtaining the highest accuracywhen comparedwith other feature
extraction methods like PCA, KPCA, and NMF.

For hyperspectral data classification, our proposed SAE-LR
method has been proven to provide statistically higher accuracy
than RBF-SVM, a classical classifier previously considered to be
state-of-the-art in this field. In addition, we also inspected the
impact that the depth of feature has on classifying hyperspectral
data. Our experimental results suggest that deeper features
always lead to higher classification accuracies, though too deep
structure will act inversely. Based on our results, we suggest
using 4–6 hidden layers ofAEswith 20–60 hidden units per layer
for hyperspectral data classification tasks. The disadvantage of
SAE-LR is its training time, but in compensate, the testing time
efficiency is much faster than other methods like SVM or KNN.

For our proposed spatial-dominated information-based clas-
sification, both SAE-LR and SVMhave proved the effectiveness
of the PCA-window spatial information extraction method. The
SAE-LR classifier succeeds in classifying datasets and yields a
higher accuracy than traditional spectral information-based
methods.
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