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Abstract—Hyperspectral data classification is a hot topic in
remote sensing community. In recent years, significant effort has
been focused on this issue. However, most of the methods extract
the features of original data in a shallow manner. In this paper,
we introduce a deep learning approach into hyperspectral image
classification. A new feature extraction (FE) and image classifi-
cation framework are proposed for hyperspectral data analysis
based on deep belief network (DBN). First, we verify the eli-
gibility of restricted Boltzmann machine (RBM) and DBN by
the following spectral information-based classification. Then, we
propose a novel deep architecture, which combines the spectral-
spatial FE and classification together to get high classification
accuracy. The framework is a hybrid of principal component anal-
ysis (PCA), hierarchical learning-based FE, and logistic regression
(LR). Experimental results with hyperspectral data indicate that
the classifier provide competitive solution with the state-of-the-art
methods. In addition, this paper reveals that deep learning system
has huge potential for hyperspectral data classification.

Index Terms—Deep belief network (DBN), deep learning, fea-
ture extraction (FE), hyperspectral data classification, logistic
regression (LR), restricted Boltzmann machine (RBM), support
vector machine (SVM).

I. INTRODUCTION

YPERSPECTRAL data can provide spatial and spec-
tral information simultaneously [1], [2]. For this reason,
hyperspectral data are used in a wide range of applications such
as agriculture [3], mineralogy [4], surveillance [5], astronomy
[7], and environmental sciences [9], [10]. Classification of each
pixel in hyperspectral imagery is a common technique used in
these applications. Because of the importance of classification,
a large number of classification methods have been developed
in the last two decades.
In the early stage of hyperspectral data classification, a lot of
machine learning methods were introduced to solve the prob-
lem, and the typical algorithms include k-nearest neighbors,
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maximum likelihood, minimum distance and logistic regres-
sion (LR) [11], [12]. To deal with the Hughes effect [1], many
feature reduction methods were proposed including the recent
work on sparse representation [6], [8]. There are two kinds of
these methods: 1) feature selection (FS) and 2) feature extrac-
tion (FE) [13], [14]. FS is to find a good subset of the original
spectral bands [15]-[17], while FE is to seek a proper subset in a
transformed feature space [18], [19]. In the classification stage,
the classifiers use the reduced features instead of the original
data to classify.

Support vector machine (SVM) is a powerful classification
tool, which exhibits low sensitivity to high dimensionality. In
[20], SVM was introduced for hyperspectral data processing.
It has become a popular approach and improved classification
accuracy compared with other widely used pattern recogni-
tion techniques [21], [22], [52]. For a long time, SVM-based
classifiers have been the mainstream methods of classification
[32].

In recent years, spatial information has been taken into
account and some spectral-spatial-based classifiers have been
proposed, and these methods provided significant advantages
in terms of improving performance [23], [24]. In [25], the
proposed method was based on the fusion of morphological
information and original data followed by SVM. In [26], a new
classification framework was proposed to exploit the spatial and
spectral information using loopy belief propagation and active
learning. In [27], spatial-spectral kernel sparse representation
was proposed to deal with hyperspectral data classification.

The traditional classifiers like linear SVM and LR can be
attributed to single-layer classifiers, while decision tree or SVM
with kernels are believed to have two layers [28], [29]. Deep
architectures with more layers, however, can potentially extract
abstract and invariant features for better image or signal clas-
sification [30]. Based on neuroscience, human brains process
information with multiple stages from retina to cortex, which
leads to high performance on object recognition [31]. The
applications of deep learning to image classification [32], [33],
language processing [34] and speech recognition [35] have been
actively studied in recent years. The classification of hyperspec-
tral remote sensing images is a challenging task, due to the
complex imaging conditions. In order to extract efficient fea-
tures of hyperspectral data, it is important to investigate several
deep architectures to benefit hyperspectral data classification.

In this paper, a new FE and image classification frame-
work is proposed for hyperspectral data analysis based on
deep belief network (DBN). Our work focuses on single-
layer restricted Boltzmann machine (RBM) and multilayer deep
network (DBN)-based models to learn the shallow and deep
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features of hyperspectral data, respectively. The learnt features
are then used in an LR to address the classification problem of
hyperspectral data.

The main contributions of this paper can be summarized
as follows: 1) We introduce DBN for hyperspectral data FE
for the first time. DBN extracts the deep and invariant fea-
tures of hyperspectral data, which will contribute to a reli-
able classification. 2) The original DBN has a requirement
of one-dimensional data, while hyperspectral image is three-
dimensional data. We address this problem and develop a new
framework for 3-D hyperspectral image, which combines prin-
cipal component analysis (PCA), hierarchical learning-based
FE, with LR. 3) Three DBN-based deep learning architectures
(DLAs) are proposed with spectral, spatial, and spectral—spatial
features, respectively.

The rest of the paper is organized into four sections.
Section II is a brief description of deep learning, RBM, and
DBN models used in this paper. In Section III, we present
three classification frameworks based on spectral features,
spatial features, and spectral-spatial features, respectively.
Experimental results with two hyperspectral data sets are shown
in Section VI. Section V summarizes the observations and
completes this paper by pointing out some probable future
works.

II. DEEP LEARNING, RBM, AND DBN
A. Feature Learning and Deep Learning

Feature learning is a critical component of a classification
system. The performance of classification is largely dependent
on the learnt features [36]. For that reason, great effort has been
made to extract effective features from original data. Especially,
deep learning-based techniques have been developed to solve
this challenging problem [30].

Deep learning is a kind of neural network which typically
has more than three layers. Deep models can hierarchically
extract the features of the data, and the learnt deep features
are invariant to most local changes of the input. According to
some recent publications, deep architectures achieve the state-
of-the-art accuracy in many application areas such as object
recognition [38] and natural language processing [39].

Typical deep neural network models include DBN [40],
stacked autoencoder (SAE) [42], and deep convolutional neural
networks (CNNs) [41].

Since the original DBN paper was published in Science [33],
DBN has become one of the most important models of deep
learning. It uses generative model in the pretraining procedure,
and uses back-propagation in the fine-tuning stage [37]. This is
very useful when the number of training samples is limited [37],
such as the case in hyperspectral remote sensing. DBN is also
a fast learning algorithm that can find the optimal parameters
quicker [40]. In this paper, we investigate the effectiveness of
DBN for hyperspectral data classification.

B. RBM

RBM is commonly used as a layer-wise training model in the
construction of a DBN. It is a two-layer network, presenting
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Fig. 1. Ilustration of RBM. The top layer represents the hidden units and the
bottom layer represents the visible units.

a particular type of Markov random filed with “visible” units
v = {0,1}” and “hidden” units h = {0, 1} (Fig. 1). A joint
configuration of the units has an energy given by
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where 0 = {b;, a;, w;; }, w;; is the weight between visible unit
i, and hidden unit j; b; and a; are bias terms of visible and

hidden unit, respectively. They are the model parameters.
The joint distribution over the units is defined by
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where Z(0) is the normalizing constant. The network gives a
probability to every input vector via the energy function. The
probability of the training vector can be raised by adjusting 6 to
lower the energy as given in (1).

The conditional distributions of hidden unit h and input
vector v are given by logistic function
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Once the states of hidden units are chosen, the input data can
be reconstructed by setting each v; to 1 with the probability
of (5). The hidden units’ states are then updated, so that they
represent the features of the reconstruction.

The learning of W is done by a method called contrastive
divergence (CD) [43]. The change in a weight is given by

Awij =€ (’Uihjdata - ULh ) (7)

J reconstruction

where € is a learning rate. Through the learning process, we can
obtain proper value of W.

The power of RBM lies in the form of reconstruction oriented
learning. During reconstruction, it only uses the information in
hidden units, which is learnt as features from input. If the model
can recover original input perfectly, it means that the hidden
units retain enough information of the input, and the learned
weights and biases can be deemed as good measures of the
input data.
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Fig. 2. Instance of a DBN connected with a LR layer. It has five layers: 1) one
input layer; 2) three hidden layers; and 3) one output layer.

C. DBN

A single hidden layer RBM is not the best way to capture
the features in the data. After the training of RBM, the learnt
features can be used as the input data for a second RBM. This
kind of layer-by-layer learning system can be used to construct
DBN [45], [46]. In this way, DBN can progressively extract
deep features of input data. That is to say, DBN learns a deep
feature of input via pretraining in a hierarchal manner. Fig. 2
shows a typical instance of a DBN connected with a subsequent
classifier.

The first RBM maps input data in zeroth-layer to a first-
layer feature. It is trained in the same manner as aforementioned
RBM. After the training, the first layer RBM is completed; sub-
sequent layers of RBM are trained via the output of its previous
layer. The features of the last RBM are the learnt features of the
whole training system.

An LR layer is added to the end of feature learning system.
This LR classifier is used to fine-tune the whole pretrained net-
work to integrate the layers of neural networks and perform
classification by utilizing the learnt features. The process of
fine-tuning is back-propagation, searching for a minimum in a
peripheral region of parameters initialized by DBN [47], [48].

ITT. CLASSIFICATION FRAMEWORKS BASED ON DBN

In this section, we develop three DBN-based frameworks for
hyperspectral data classification, with spectral features, spatial
features and spectral—spatial features, respectively.

A. Spectral Classification Framework

In this section, we propose a DLA for hyperspectral data
classification with the pure spectral features.

Several existing approaches for hyperspectral data classifica-
tion are shallow in their architectures, such as SVM, KNN, and
maximum likelihood [11], [12]. Instead, we advocate a deep
architecture in this paper. For hyperspectral data with complex
characteristics, one single hidden layer usually would not be
enough in describing the complicated relations between origi-
nal data and the detailed class taxonomies. A deep architecture
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Fig. 3. Spectral classification using DBN-LR framework.

can show its advantage in dealing with these complicated rela-
tions. In addition, the deep architecture could learn features
with as less prior knowledge as possible [49].

Here, we employ a DBN for unsupervised feature learning
and add an LR layer above the DBN to constitute a DBN-
LR framework. Training a deep multilayered neural network
is actually difficult because the error gradient would explode or
vanish as the number of layers increases. Recent work on deep
learning has made deep neural network training more effec-
tive since Hinton’s breakthrough in 2006 [33]. Then, we use
an LR at the top layer in our approach so that we can perform
supervised fine-tuning on the whole architecture easily [40].

Our deep architecture for hyperspectral data classification
using the pure spectral features is illustrated in Fig. 3. Input
space X is, generally, the raw spectral data collected as a one-
dimesional (1-D) vector for each pixel. To make full use of the
limited prior knowledge from a network perspective, we take
the responses of all the spectral channels into the input space.

Unlike the binary RBM, as introduced in Section II-B,
we replace it with real-valued units [30], [44], [50] that add
Gaussian noise to model the input data. Energy function and
conditional probability distributions are as follows:
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where o is the standard deviation of a Gaussian visible unit, and
N (u,0?) is the Gaussian distribution with mean g and variance
0. Since the responses of all the spectral channels are used as
input data, we have to regularize the model for sparsity [41]. We
encourage each hidden unit to have a predetermined expected
activation by a regularization penalty of the following form:

e (Eere))

where p determines the sparsity and v* is a sample in the
training set. m is the number of training samples.

We can see each layer RBM layer in the DBN is a process
of nonlinear feature transformation. Features learned in the top

(1)
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Fig. 5. Spectral-spatial classification using DBN-LR framework.

layer of the DBN are the most representative features for mod-
eling the data. It can be denoted by Hy, = hp1, hpa, ..., hpn,
where p represents the top layer, and n is the number of fea-
tures in the top layer. The representative features are learned in
an unsupervised way and can be used for various tasks, such
as classification and regression. In our architecture, the most
representative features 1, are used as the input vector for clas-
sification (the top LR layer). Moreover, since we employ LR
in the top, the whole structure can be seen as a complete struc-
ture of a neural network. The top LR fine-tunes features learned
from the DBN via error back propagation on the whole struc-
ture by using labeled samples. Then for the complete structure,
the DBN is the feature learning model, and the LR layer is the
classification model.

In summary, we first use the raw data of all the spectral
channels as the input. Then, a DBN is applied to learn the
representative and robust features from the inputs via several
layers of nonlinear feature transformation to describe the com-
plex mapping of inputs and features. Finally, an LR layer is
used to produce the class labels from the features learned by
the DBN.

B. Spatial Classification Framework

Aimed to make full use of the spatial information around
each pixel’s neighborhood, the proposed framework takes all
the pixels in a flat neighbor region into consideration, and
employs the DBNSs to learn the features by itself. The flowchart
of the proposed method is detailed in Fig. 4.

In the first step, PCA is conducted to reduce the data dimen-
sion to an acceptable scale and reserve spatial information.
We use PCA along the spectral dimension and only retain the
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first several principal components (PCs). The PCA transforma-
tion matrix is fitted on the whole image, both for tagged and
untagged pixels. This step does cast away part of the spectral
information, but the spatial information is less affected. Due to
the use of a few PCs instead of the hundreds of original spectral
channels, it can prevent subsequent processes from producing
tens of thousands of dimensions for the FE system (DBN).

Second, we extract a neighbor region around the labeled pix-
els in the condensed data, which has only several PCs in spectral
dimension. For each pixel, there are w x w neighbor pixels
with a region size of w. Given the number of PCs is n, a pixel
can be represented as a box with. w X w X m. members.

After these processes, we “flatten” the box, i.e., stretch it to
a 1-D vector with w?n x 1 elements. Without any artificial
FE and selection, 1-D vectors are then fed into a DBN. The
subsequent includes a layer-wise pretraining DBN of and a fine-
tuning the whole model with LR. These steps are similar to the
previous section which deals with the spectral features.

C. Spectral-Spatial Classification Framework

In this section, we integrate the spectral and spatial features
together to construct a spectral-spatial-based classification
framework. The whole flowchart is shown in Fig. 5.

As discussed above, pure spectral features and spatial fea-
tures both provide a discriminating power for the pixel-wise
classification. The spectrum of a pixel contains important infor-
mation for discriminating different kinds of ground categories.
With spatial information, the statistics of the pixels in a neigh-
bor region decreases of the intra-class variance which can
lead to improved classification performance [51]. Taking into
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Fig. 6. AVIRIS the Indian Pines data set. False-color composite (Band 50, 27, 17) and representing 16 land-cover classes.

TABLE 1
LAND-COVER CLASSES AND NUMBERS OF PIXELS IN THE INDIAN PINES DATA SET
Class Name No. of training No. of testing Class Name No. of training No. of testing
Code samples samples code samples samples

1 Alfalfa 23 23 9 Oats 10 10

2 Corn-notill 708 711 10 Soybean-notill 483 482

3 Corn-mintill 412 412 11 Soybean-mintill 1228 1222

4 Corn 119 118 12 Soybean-clean 296 295

5 Grass-pasture 241 241 13 Wheat 102 102

6 Grass-trees 364 363 14 Woods 631 629

7 Grass-pasture-mowed 14 14 15 Buildings-grass-trees 189 193

8 Hay-windrowed 235 239 16 Stone-steel-towers 45 46

Total 5100 5100

account the different emphases, it is agreed that the com-
plement of spectral and spatial features can present more S
reliable classification. The integration of multiple features is B Meodow
addressed by using a vector stacking (VS) approach in this Gravel
study. That is to say, for each pixel, the 1-D vector processing in Trees
Section III-B (Fig. 4) is added to the end of the spectral vector. Metal sheets
After forming a hybrid set of spectral-spatial features, we feed Bare soil
it into DBN-LR without any preprocessing of FE and selection. Binimen
Following pretraining and fine-tuning steps similar to above, we 2;:::‘”

can eventually assign a class label to each pixel.

IV. EXPERIMENTS AND RESULTS
A. Data Description and Experimental Setup

In our experiments, two hyperspectral data sets were applied
to evaluate the proposed methods. They are a mixed vegetation
site over the Indian Pines test site in North-Western Indiana
(Indian Pines) and an urban site over the city of Pavia, Italy
(Pavia University scene).

The Indian Pines data set was acquired by the airborne
visible/infrared imaging spectrometer (AVIRIS). The image has
a size of 145 x 145 pixels and 220 spectral bands in the wave-
length range of 0.4 — 2.5 pum. The false color composite image
is shown in Fig. 6. The number of bands was reduced to 200
by removing the bands covering the region of water absorption.
16 different land-cover classes are available in the ground truth
and the number of samples of each class is listed in Table I.

The second data set, Pavia data, was gathered by a sensor
known as the reflective optics system imaging spectrometer

Fig. 7. ROSIS-3 data, Pavia, Italy. False-color composite (Band 10, 27, 46) and
representing nine land-cover classes.

(ROSIS-3) over the city of Pavia, Italy, with 610 x 340 pixels
(Fig. 7). 115 bands were collected over 0.43 — 0.86 pm range
of the electromagnetic spectrum. The spatial resolution is 1.3 m.
In the experiment, some bands were removed due to noise; the
remaining 103 channels were used for the classification. Nine
land-cover classes were selected, which are shown in Fig. 7 and
the numbers of samples for each class are given in Table II.
For evaluating the classification accuracy, labeled samples
are randomly divided into training set and test set with a ratio of
1:1. So the processes of training and test share the same num-
ber of samples. The details are shown in Tables I and II. In
order to investigate the performance of the proposed methods,
experiments were organized step by step. The characteristic
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TABLE I1
LAND-COVER CLASSES AND NUMBERS OF PIXELS
IN THE PAVIA DATA SET

Class No. of training No. of testing
code Him= samples samples
1 Asphalt 3414 3419
2 Meadows 9316 9318
3 Gravel 1099 1102
4 Trees 1716 1712
5 Metal sheets 688 687
6 Bare soil 2540 2542
7 Bitumen 678 673
8 Bricks 1936 1936
9 Shadow 513 511
Total 21900 21900

of RBM was first examined. Classification with spectral fea-
tures, classification with spatial features and classification with
spectral—spatial features were conducted separately.

As SVMs with kernels have been widely used, this method
was implemented for comparison in this study. To convincingly
compare and estimate the capabilities of the proposed meth-
ods, for both SVM and DBN-LR, we run the experiments 20
times with different initial random training samples, and then
confidence intervals (obtained by the mean and standard devia-
tion) of overall accuracy (OA), kappa statistic, average accuracy
(AA), and computational time are reported.

Furthermore, a paired t-test between SVM and DBN-LR was
performed to validate whether the observed increase in the OA
is statistically significant (at the confidence level of 95%) [51].
We use mean test to test whether the mean OA of our model
(a7) is higher than the mean OA of some control groups such as
SVM (az). We accept the hypothesis of a; being larger than a,
if and only if

(a1 —az) v/n1 +ny —2
\/<n11 + n%) (n15? + nos3)

where s1 and s, are the observed standard deviations for the two
models, n; and ny are the number of realizations of experiments
reported, and t;_ o is the octh best quantile of the Student’s law
(typically oc = 0.05 is used) [51].

>ti_qn1 +n2—2]  (12)

B. RBM: Characteristic and Analysis

In this section, the characteristic of RBM is investigated to
indicate the validity for hyperspectral data classification.

1) Reconstruction of Spectral Curves With Hidden Units:
First, we examine the quality of FE by checking the qual-
ity of the reconstructed spectral curve. We used single-layer
RBMs with different numbers of hidden units (10, 50, 100,
150, and 200) and trained them on Indian Pines data. After the
single-layer RBM learned with hundreds of iterating epochs,
the reconstruction is computed with the hidden units (Section
II-B). The reconstruction owns the same dimensionality with
the original curve. Fig. 8 shows the reconstructions operated
by RBMs. The signal-to-noise ratio (SNR) is computed in the
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condition that the difference between the original and the recon-
struction data is regarded as noise. If the hidden units contain
enough information of the input data, the reconstruction will be
good. So, RBM can be thought as an effective FE method for
hyperspectral data.

2) RBM’s Filter Characteristics: The hyperspectral data
has N bands, and RBM has N input neurons and H hidden neu-
rons. The input-to-hidden layer of an RBM is fully connected,
so every single hidden unit has its connections to every input
neuron. For each hidden unit, it has N connection weights. The
N connection weights can be viewed as a filter, by filtering
away the content of certain wavelengths from input, and at the
same time exaggerating others. So, an RBM with H hidden
units can be viewed as H filters.

Aimed to make the filters visible, the N connection weights
are horizontally folded to form a matrix M. The matrix M has
N entries and for the whole network, there are H matrixes.
Each matrix M can be shown as a two-dimensional gray image,
and the intensities of N entries are the connection weights.
Hence, we can directly observe the interesting characteristics
of these filters.

Fig. 9(a) and (b) shows the filters acquired after RBMs’
learning on Indian Pines and Pavia data sets, respectively. The
1-D connection weights are folded into 20 x 10 and 13 x 8
matrices corresponding to the 200 and 103 input sizes of the
Indian Pines and Pavia data. In Fig. 9(a), there are 10 hidden
units in the trained RBM, thus 10 tiny filter images are in the
plot. For the Pavia data, 40 hidden units are used.

The intensity of each pixel stands for the value of correspond-
ing weights. Some hidden units have large weights over parts
of input units and small weights over others, which suggest that
the filters just care about a certain wavelength interval. The hor-
izontal folding way that leads to the filters is trying to extract
“horizontal” features, especially for Fig. 9(a). In addition, other
weights have more complex connecting patterns, having ripples
over different input units, or showing Gaussian-like noises in
some bands.

C. Spectral Classification

After examining various characteristics of RBM, we exploit
the classification potential of DLA by conducting it with spec-
tral features. Here, we have explored the influence of depths
(the number of RBMs’ layers) on classification, the running
time of DBN, as well as comparisons with SVM.

1) Influence of Depths: Depth plays an important role in
the classification accuracy because it determines the quality of
learned features from various aspects such as invariance and
abstraction. In consideration of the computational complexity,
the depth also affects the running time of the proposed method.

Here, several DBN-LRs with different depths were con-
ducted. For the Indian Pines data, which has 200 spectral
bands and 16 land-cover classes, the number of hidden units
for each hidden layer is set to 30. The neural networks were
constructed as a framework with 200-30-- - - - 30-16 units. For
the Pavia data set, the neural networks were 103-50-- - --50-9.
“Depth” corresponds to the number of 30- or 50-sized layers
in the DLA. In this part of the experiment, the RBMs were
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Fig. 8. Reconstructions operated by RBMs with different numbers of hidden units for the class of Soybean-mintill in the Indian Pines data. (a) The original curve.
(b)—(f) Reconstructions of (a) with 10, 50, 100, 150, and 200 hidden units, respectively.

(b)

Fig. 9. Filter images learned by an RBM on (a) Indian Pines and (b) Pavia.
Each N-pixel tiny rectangle stands for N input to hidden weights that connect
each input unit to a same hidden unit.

tuned, with only 1000 epochs of pretraining and 5000 epochs
of fine-tuning.

Tables III and IV show the classification results, training
time, and test time of DBNs with different depths. Note that
the best accuracy of each case is highlighted by the shaded
part. Experiments show that depth does help to improve clas-
sification accuracy. However, given the characteristic of hyper-
spectral data, too deep will act inversely. The best depths are
2 and 4 for two data sets, respectively. The depth has a signif-
icant influence on the classification accuracy. If the depths are

set improperly, the performance of DBN-LR preforms even no
better than SVM.

2) Running Time of DBN: Generally speaking, deep
learning-based methods take longer time to train the mod-
els compared with other machine learning algorithms such as
SVM. However, deep learning algorithms can be implemented
into parallel version with little modification when facing a large
scale data set.

Tables III and IV show the running time of different methods.
We can see that DBN-LRs indeed cost more time on the train-
ing stage, but they are super-fast on testing time (classification
of unknown data). The super-fast classification stage is a great
advantage when large hyperspectral images are processed.

In the experiments, we use NVIDIA GT770M graphics card
to make the training procedure faster. However, the DBN codes
used was a basic design, instead of a professional version. In the
realization of SVM-based hyperspectral data classification, we
use LibSVM [54] as a toolbox, which is a fast implementation
of SVM.

3) Comparative Experiments With SVMs: SVMs are one
of the state-of-the-art classifiers for hyperspectral data. Aimed
to test the performance of the proposed DBN-LR method,
the comparison with SVM models were conducted. The SVM
parameters, a regularization parameter c and a kernel parameter
g (for the RBF kernel), were determined by a grid search using
cross validation.

The results are shown in Tables III and IV. With regard to
the classification performance, the proposed DBN-LR outper-
forms SVM in most of the cases. For the Pavia data set, when
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TABLE IIT
CLASSIFICATION WITH SPECTRAL FEATURE ON DBN-LR AND SVM ON INDIAN PINES DATA SET THE MEAN VALUES £ STANDARD DEVIATION
Classifier Depth OA (%) AA (%) Kappa statistic Training time (s) Test time (s)

1 91.04 + 0.2835 88.63 + 0.6699 0.8912 + 0.0032 33.5040 + 0.4442 0.0001 £ 0.0000

2 '_ .34 + (.267" ).70 + 0.3408 40.0800 + 0.9628 0.0140 = 0.0000

DBN-LR 3 90.82 + 0.2389 87.22 + 0.6595 45.6720 + 0.4900 0.0155 + 0.0000
4 90.56 + 0.3485 86.03 +0.3171 0 8924 + 0.0040 47.0160 + 0.5476 0.0173 +0.0001

D 89.19 + 0.6073 85.34 + 0.6477 0.8881 + 0.0070 50.8680 + 0.5186 0.0198 + 0.0001

Linear SVM 85.49 +£0.0713 85.97 + 0.0869 0.8340 = 0.0001 5.2759 £ 0.0984 3.3522 +£0.1002

RBF SVM 90.81 +0.1204 88.60 + 0.1993 0.8973 +0.0001 3.3988 + 0.0752 4.4562 + 0.0856

TABLE IV
CLASSIFICATION WITH SPECTRAL FEATURE ON DBN-LR AND SVM ON PAVIA, ITALY DATA SET THE MEAN VALUES + STANDARD DEVIATION

Classifier Depth OA (%) AA (%) Kappa statistic Training time (s) Test time (s)
1 95.71 £ 0.1045 93.98 +0.2217 0.9437 £ 0.0013 475.1780 + 4.7888 0.0781 + 0.0001
2 96.12 +0.1138 94.60 + 0.1966 0.9491 £ 0.0015 592.9500 + 7.1190 0.0622 + 0.0001
DBN-LR 3 96 21 + O 1337 94.86 + 0.1982 0.9502 + 0. 0018 668.0000 + 16.0468 0.0634 + 0.0001
4 i 95.09 = 0.4901 0.9530 =+ 0.0019 761.2000 + 8.1670 0.0788 + 0.0002
5 96 36+0 1527 95.00 + 0.4851 0.9522 +0.0021 933.5260 + 10.2401 0.1213 £ 0.0013
Linear SVM 91.49 + 0.0985 88.01 +0.5523 0.8876 + 0.0015 57.2033 = 0.1850 20.9867 + 0.2063
RBF SVM 95.84 +0.1852 94.11 + 0.8892 0.9453 + 0.0068 15.3584 + 0.4130 15.4892 + 0.3660
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Fig. 10. Influence of the number of PCs.

the architecture is combined by one RBM (the depth is 1),
DBN-LR gives lower accuracies than RBF SVM. However, as
the architecture gets deeper, DBN-LR increases the mean OAs
by 0.28%—0.58%. Between the two SVM methods, SVM with
linear kernel does not perform as well as SVM with RBF kernel.

The paired t-test between RBF SVM and DBN-LR with the
best depth were made and the results show that improvements
on OA are statistically significant (at the level of 95%) for the
two data sets.

D. Spatial Classification

In this section, spatial information was incorporated.
Furthermore, the spatial FE method results were examined by
varying the number of retained PCs, and the depth of neural
network.

1) Influence of the Number of PCs: Although the pro-
posed spatial method mainly focuses on extracting spatial

Depths (the number of hidden layers)
Fig. 11. Influence of depths (the spatial framework).

information of hyperspectral data, the number of PCs affects
the classification accuracy. The amount of spectral information
can be measured by the number of PCs to keep. Here, we var-
ied the number of retained PCs from 1 to &8, and check how the
final classification accuracy was affected. In Fig. 10, the results
of the DBN-LR models with two hidden layers are presented.
It shows that as the number of PCs increases, the classifica-
tion accuracies of both data sets become higher. As a tradeoff
between accuracy and computational complexity, a reasonable
number of PCs is 5.

2) Influence of Depths: A series of DBNs with different
depths but with fixed principal component numbers (5 PCs) and
hidden unit numbers (50 hidden units) were trained, aimed to
observe how the depth of the features affects overall classifica-
tion accuracy. The results are show in Fig. 11. The best depths
are 3 and 4 for two data sets, respectively. Compared with
spectral information, deeper features are required for spatial
information to get the best OA. The drops of OAs with 5 or
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TABLE V
SPATIAL AND SPECTRAL—SPATIAL CLASSIFICATION OF DBN-LR AND SVM ON TWO DATA SETS:
THE MEAN VALUES = STANDARD DEVIATION

Datasets Measurements DEGLR REESVM EME
Spatial Spectral-Spatial Spatial Spectral-Spatial RBF-SVM
Indian Overall Accuracy (%) 93.20 + 0.2594 95.95 + 0.1 872 92.42 +0.1341 95.53 + 0.1325 95.10 + 0.1893
Pines Average Accuracy (%) 92.12 +0.1980 91.26 +0.1822 95.12 + 0.1248 94.71 + 0.2465
Kappa Coefficient 0.9226 + 0.0022 0.9227 + 0.0024 0.9511 + 0.0069 0.9497 + 0.0021
Overall Accuracy (%) 98.62 +0.1288 98.17 +0.1422 98.38 + 0.2250 97.84 +0.1121
Pavia Average Accuracy (%) 97.95 £ 0.1517 97.04 = 0.1756 98.16 + 0.1897 97.75 £ 0.1822
Kappa Coefficient 0.9819 + 0.0012 0.9733 + 0.0035 0.9836 + 0.0022 0.9780 + 0.0011
more hidden layers indicate that too deep architectures bring 100 T T T
opposite effect. ' : :
o9k — - — — _ _ I __—______:_,__?.__:_;:‘__ R P
S 4 | - ")
E. Spectral-Spatial Classification Br---m - : ——————— : —————— —: ———————
Spectral—spatial classification framework combines the spec- 7k - - - - -~ : ——————— : —————— —: ———————
tral and spatial information together to form a hybrid input, e : : :
and uses the DLA to classify hyperspectral data, as detailed g 9%~ — - e, e
in Section III-C. Aimed at investigating the classification e b T 4. !
performance of proposed method, several experiments were b : _______ : B N _: _______
conducted. | o L _\"_\_K —
1) Comparisons With Spatial Classification and SVMs: : : k
Here, we compared spectral-spatial classification with the o o o ! —
aforementioned spatial method. We also performed RBF-SVM | : :_-;_'_ 'F:':\'I?: Pines
using both kinds of information to form a control group. 02| 12 :13 A :

In Table V, we can see that for both the DBN-LR and RBF-
SVM methods, spectral-spatial features perform better than
spectral features and spatial features in terms of classification
performance. While comparing the two methods within each
feature set, DBN-LR is better. As illustrated in Section III-C,
the dimensionality of spectral—spatial feature is higher than the
other two, and improved classification accuracy with spectral—
spatial features indicates the potential of DBN-LR in dealing
with hyper-dimensional feature space.

2) Comparing With Other Spatial Method: Extended mor-
phological profile (EMP) has been developed in recent years,
which integrates spatial information into spectral-based clas-
sifiers [53]. EMP followed by SVM is an advanced spatial—
spectral classification method for hyperspectral data. This
method was tested in this study. We used opening and clos-
ing operations on the first three PCs of hyperspectral data to
extract structure information. In the experiments, the structure
shape used was disk and the structure sizes were from 1 to 4.
Therefore, 24 spatial features were generated. A range of ¢, g
values for the SVM was searched in the EMP with RBF-SVM
method, and for the Indian Pines data they were configured
as ¢ = 0.0313 and g = 1, while those in the Pavia data were
c = 128, g = 32. Table V shows the results obtained by EMP.

Compared with the EMP followed by RBF-SVM, DBN-LR
performs better in terms of OA, kappa statistic, and AA. Paired
t-tests of OA also show that the spectral-spatial framework with
DBN-LR is consistently better than the EMP with RBF-SVM.

3) Influence of Depths: In accordance with the spectral and
spatial frameworks, the depth of network also has an important
influence on the classification performance of spectral—spatial
classification framework.

Depths (the number of hidden layers)

Fig. 12. Influence of depths (the spectral-spatial framework).
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Fig. 13. Influence of the training sample size (Pavia). The ratio between
training and test samples varies from 1:5 to 5:5.

In this section, we implement several DBNs with different
depths but with fixed principal component numbers (5 PCs).
The numbers of hidden unit are 60 and 50 for the two data
sets, respectively. The influence of depth on the OA is shown in
Fig. 12. For the Indian Pines data, the OAs float up and down,
which are sensitive to the depths. In contrast, the OAs of Pavia
data range in a smaller degree. The best depths are 2 and 3 for
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Fig. 14. Spectral, spatial, and spectral—spatial classification using DBN-LR on the whole image of Indian Pines data set.
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Fig. 15. Spectral, spatial, and spectral—spatial classification using DBN-LR on the whole image of Pavia data set.

two data sets, respectively. Aimed to get the best OA, the selec-
tion of depths are different for the three frameworks. The drops
of OAs with 4 or more hidden layers indicate that too deep
architectures bring opposite effect, which has been discussed
in the spectral and spatial frameworks.

4) Influence of the Training Sample Size: In this section,
experiments are conducted to explore the performance of DBN-
LR with limited training samples.

Here, we varied the ratio between training and test samples
from 1:5 to 5:5, and checked how the final classification OAs
were affected. Fig. 13 shows the results of DBN-LR models.
The confidence intervals obtained by the mean and standard
deviation are shown as box plots. It can be seen that the OA
decreases only slightly with the reduction of training samples.

The performance is similar when the portion of training sam-
ples varies from 1 to 5, which is promising.

F. Visual Inspection on the Whole Image

In this section, we examine the classification accuracy from
a visual perspective. We used the best DBN-LR models for the
spectral, spatial, and spatial-spectral sets of features to classify
the whole images of Indian Pines and Pavia. All the parameters
in these models were optimized.

From the resulting images, we can figure out how the
proposed spatial information extraction method affects the
classification results. In Figs. 14 and 15, we can see that spectral
classification always results in noisy scatter points, and that
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spatial features correct this shortcoming. However, spatial fea-
tures have their own flaws. They misclassify certain small
regions, like the mixture of meadow and bare soil in the Pavia
data. This can be found in the area of bare soil on the top left
side of the Pavia data. Finally, for the spectral-spatial classi-
fication, it gives a satisfying tradeoff. It retains the shape and
detail of some objects, while simultaneously eliminating noisy
scattered points of misclassification.

V. DISCUSSION AND CONCLUSION

In this study, a spectral—spatial classification strategy based
on DBN was proposed, tested in experiments, and discussed
in the context of hyperspectral data. Four research questions
are stated regarding DBN’s FE, classification using DBN with
spectral features, spatial features, and spectral-spectral fea-
tures, respectively.

Based on our experiments, it can be assessed that DBN
is an effective FE method, which reduces the dimension of
feature and presents a good reconstruction computed with
extracted activations. For hyperspectral data classification with
three kinds of features, our proposed DBN-LR methods pro-
vide better classification performance than SVM in most
cases.

Parameters selections, such as the depth of features and the
number of hidden units, have a large influence on the classi-
fication accuracy and computational complexity. If the depths
are set improperly, the performance of DBN-LR may not be
even better than SVM. To find the best number of layers and
the number of hidden units to use requires extensive explo-
ration of all combinations of values (i.e., grid search). However,
the grid search actually costs excessive computational complex-
ity. The optimization of the hyper-parameter is a new research
topic in deep learning field. We will try to explore on more effi-
cient methods for the parameter selection as a part of our future
work. However, our experimental results provide some guide-
lines with regard to reliable ranges for the two parameters, i.e.,
about 2—4 hidden layers of RBMs with 30-60 hidden units per
layer appear sufficient.

It is conceded that the training complexity of DBN is a
disadvantage, but they are super-fast on the testing time (classi-
fication of unknown data). The super-fast classification stage
is a great advantage when large hyperspectral images are
processed.

For our proposed spatial and spectral-spatial feature-based
classification, both DBN-LR and SVM have shown the effec-
tiveness of the PCA-window spatial information extraction
method. The combination of spectral-spatial feature and the
DBN-LR classifier yields the highest classification accuracy.
It also reveals the potential processing power of DBN-LR in
hyper-dimensionality feature space. In addition, our proposed
spectral-spatial framework shows sound performances than
EMP with RBF-SVM.

In our future work, we explore on other deep architectures
and examine their use for hyperspectral image classification.
In addition, various spatial features will be tested for effective
spatial information extraction.

(5]

(6]

(7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

2391

REFERENCES

D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.

J. A. Richards, Remote Sensing Digital Image Analysis: An Introduction.
New York, NY, USA: Springer, 2013.

F. M. Lacar, M. M. Lewis, and I. T. Grierson, “Use of hyperspec-
tral imagery for mapping grape varieties in the Barossa Valley, South
Australia,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol. 6, Sydney,
Australia, 2001, pp. 2875-2877.

F. V. D. Meer, “Analysis of spectral absorption features in hyperspectral
imagery,” Int. J. Appl. Earth Observ. Geo. Inform., vol. 5, no. 1, pp. 55—
68, Jan. 2004.

P. W. Yuen and M. Richardson, “An introduction to hyperspectral imaging
and its application for security, surveillance and target acquisition,” Imag.
Sci. J., vol. 58, no. 5, pp. 241-253, 2010.

H. Zhang, J. Li, Y. Huang, and L. Zhang, “A nonlocal weighted joint
sparse representation classification method for hyperspectral imagery,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6,
pp. 2056-2065, Jun. 2014.

E. K. Hege et al. “Hyperspectral imaging for astronomy and space
surveillance,” in Proc. SPIE’s 48th Annu. Meet. Opt. Sci. Technol., 2004,
pp. 380-39.

H. Yuan, Y. Yan Tang, Y. Lu, L. Yang, and H. Luo, “Hyperspectral image
classification based on regularized sparse representation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2174-2182,
Jun. 2014.

T. J. Malthus and P. J. Mumby, “Remote sensing of the coastal zone: An
overview and priorities for future research,” Int. J. Remote Sens., vol. 24,
no. 13, pp. 2805-2815, Nov. 2003.

J. B. Dias et al., “Hyperspectral remote sensing data analysis and future
challenges,” Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, 2013.

S. Rajan, J. Ghosh, and M. M. Crawford, “An active learning approach
to hyperspectral data classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 4, pp. 1231-1242, Apr. 2008.

G. M. Foody and M. Ajay, “A relative evaluation of multiclass image
classification by support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.

L. O. Jimenez and D. A. Landgrebe, “Hyperspectral data analysis and
supervised feature reduction via projection pursuit,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 6, pp. 2653-2667, Nov. 1999.

X. Jia, B. Kuo, and M. M. Crawford, “Feature mining for hyperspectral
image classification,” in Proc. IEEE, vol. 101, no. 3, pp. 676679, Mar.
2013.

C. I. Chang, Q. Du, T. Sun, and M. L. G. Althouse, “A joint band
prioritization and band-decorrelation approach to band selection for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 37, no. 6, pp. 2631-2641, Nov. 1999.

S. B. Serpico and L. Bruzzone, “A new search algorithm for feature
selection in hyperspectral remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.

F. Samadzadegan, H. Hasani, and T. Schenk, “Simultaneous feature selec-
tion and SVM parameter determination in classification of hyperspectral
imagery using Ant Colony Optimization,” Can. J. Remote Sens., vol. 38,
pp. 139-156, 2012.

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of
hyperspectral data using discrete wavelet transform feature extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2331-2338,
Oct. 2002.

J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and
dimensionality reduction: an orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785,
Jul. 1994.

F. Melgani and B. Lorenzo, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.

A. Ambikapathi, T.-H. Chan, C.-H. Lin, and C.-Y. Chi, “Convex geom-
etry based outlier-insensitive estimation of number of endmembers in
hyperspectral images,” Signal, vol. 1, p. 1-20, 2012.

A. B. Santos, A. de Albuquerque Araujo, and D. Menotti, “Combining
multiple classification methods for hyperspectral data interpretation,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3,
pp. 1450-1459, Jun. 2013.

A. Plaza, J. Plaza, and G. Martin, “Incorporation of spatial constraints
into spectral mixture analysis of remotely sensed hyperspectral data,”
in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., 2009,

pp. 1-6.



2392

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

Y. Qain and M. Ye, “Hyperspectral imagery restoration using nonlocal
spectral-spatial structured sparse representation with noise estimation,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2,
pp. 499-515, Apr. 2013.

M. Fauvel et al., “Spectral and spatial classification of hyperspectral data
using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.

J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial classification
of hyperspectral data using loopy belief propagation and active learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb.
2013.

J. Liu et al., “Spatial-spectral kernel sparse representation for hyperspec-
tral image classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 6, no. 6, pp. 2462-2471, Dec. 2013.

G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 6, pp. 1351-1362, Jun. 2005.

Y. Bengio and Y. LeCun, Scaling Learning Algorithms Towards Al.
Cambridge, MA, USA: MIT Press, 2007.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798-1828, Aug. 2013.

N. Kruger et al., “Deep hierarchies in primate visual cortex what can
we learn for computer vision?”” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1847-1871, Aug. 2013.

G. Wang, D. Hoiem, and D. Forsyth, “Learning image similarity from
flickr groups using fast kernel machines,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 11, pp. 2177-2188, Nov. 2012.

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.
D. Yu, L. Deng, and S. Wang, “Learning in the deep structured conditional
random fields,” in Proc. Neural Inf. Process. Syst. Workshop, Dec. 2009,
pp. 1-8.

A. D. Mohamed and G. Hinton, “Deep belief networks for phone
recognition,” in Proc. Neural Inf. Process. Syst. Workshop, Dec. 2009,
pp- 1-9.

Z. Zuo and G. Wang, “Learning discriminative hierarchical features for
object recognition,” IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1159—
1163, Sep. 2014.

H. Larochelle et al., “An empirical evaluation of deep architectures on
problems with many factors of variation,” in Proc. 24th Int. Conf. Mach.
Learn., 2007, pp. 473—-480.

H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area v2,” in Proc. Adv. Neural Inf. Process. Syst., vol. 20, 2008,
pp. 873-880.

D. Yu, G. Hinton, N. Morgan, and J. Chien, “Introduction to the spe-
cial section on deep learning for speech and language processing,” /EEE
Trans. Audio Speech Lang. Process., vol. 20, no. 1, pp. 4-6, Jan. 2012.
G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, pp. 1527-1554, 2006.

K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biol. Cybern., vol. 36, pp. 193-202, 1980.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proc. Neural Inf. Process. Syst.,
vol. 19, 2007, pp. 153-160.

G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1711-1800, 2002.

H. Chen and A. F. Murray, “Continuous restricted Boltzmann machine
with an implementable training algorithm,” IEE Proc. Vis. Image Signal
Process., vol. 150, no. 3, pp. 153-158, Jun. 2003.

N. LeRoux and Y. Bengio, “Deep belief networks are compact universal
approximators,” Neural Comput., vol. 22, no. 8, pp. 2192-2207, 2010.
R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines,” in Proc.
Int. Conf. Artif. Intell. Statist., 2009, pp. 448-455.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Proc. Int. Joint Conf. IEEE Neural Netw., 1989, pp. 593-605.

1. Sutskever and G. E. Hinton, “Deep, narrow sigmoid belief networks
are universal approximators,” Neural Comput., vol. 20, no. 11, pp. 2629—
2636, 2008.

[49]

[50]

[51]

[52]

[53]

[54]

W. Huang, G. Song, H. Hong, and K. Xie “Deep architecture for traf-
fic flow prediction: deep belief networks with multitask learning,” IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 1-11, Oct. 2014.

R. Salakhutdinov and G. Hinton, “Using deep belief nets to learn covari-
ance kernels for Gaussian processes,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 20, 2008, pp. 1249-1256.

Z. Zhu, C. E. Woodcock, J. Rogan, and J. Kellndorfer, “Assessment of
spectral, polarimetric, temporal, and spatial dimensions for urban and
peri-urban land cover classification using Landsat and SAR data,” Remote
Sens. Environ., vol. 117, pp. 72-82, 2012.

Y. Chen, X. Zhao, and Z. Lin, “Optimizing subspace SVM ensemble
for hyperspectral imagery classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 4, pp. 1295-1305, Apr. 2014.

J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491,
Mar. 2005.

C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27,2011.

Yushi Chen (M’11) received the Ph.D. in informa-
tion and communication engineering degree from
Harbin Institute of Technology, Harbin, China,
in 2008.

Currently, he is an Associate Professor with the
School of Electrical and Information Engineering,
Harbin Institute of Technology, Harbin, China. He
has authored more than 20 peer-reviewed papers, and
he is the inventor or co-inventor of three patents. His
research interests include hyperspectral data analysis,
ensemble learning, deep learning, and remote sensing

applications.

Xing Zhao (S’14) received the Bachelor’s degree
in information antagonizing technology from
the College of Information and Communication
Engineering, Harbin Engineering University, Harbin,
China, in 2013.

Currently, she is a Graduate Student with the
Institute of Image and Information Technology,
Harbin Institute of Technology. Her research inter-
ests include hyperspectral image processing, machine
learning, and deep learning.

Xiuping Jia (M’93-SM’03) received the B.Eng.
degree in electrical engineering from Beijing
University of Posts and Telecommunications,
Beijing, China, in 1982, and the Ph.D. degree in
electrical engineering from the University of New
South Wales, Sydney, Australia, in 1996.

Since 1988, she has been with the School of
Information Technology and Electrical Engineering,
University of New South Wales, Sydney, Australia,
where she is currently a Senior Lecturer. She is also a
Guest Professor with Harbin Engineering University,

Harbin, China, and an Adjunct Researcher with China National Engineering
Research Center for Information Technology in Agriculture, Beijing, China.
She is the co-author of the remote sensing textbook titled Remote Sensing
Digital Image Analysis (Springer-Verlag, 3rd ed. (1999) and 4th ed. (2006)].
Her research interests include remote sensing and image data analysis.

Dr. Jia is an Associate Editor for the TEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING. She has served as the Inaugural Chair
of IEEE ACT&NSW Section GRSS Chapter from 2010 to 2013.



