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Summary  Understanding  the  transition  of  brain  activities  towards  an  absence  seizure,  called
pre-epileptic  seizure,  is  a  challenge.  In  this  study,  multiscale  permutation  entropy  (MPE)  is
proposed  to  describe  dynamical  characteristics  of  electroencephalograph  (EEG)  recordings  on
different  absence  seizure  states.  The  classification  ability  of  the  MPE  measures  using  linear  dis-
criminant analysis  is  evaluated  by  a  series  of  experiments.  Compared  to  a  traditional  multiscale
entropy method  with  86.1%  as  its  classification  accuracy,  the  classification  rate  of  MPE  is  90.6%.
Experimental  results  demonstrate  there  is  a  reduction  of  permutation  entropy  of  EEG  from  the

seizure-free  state  to  the  seizure  state.  Moreover,  it  is  indicated  that  the  dynamical  character-
istics of  EEG  data  with  MPE  can  identify  the  differences  among  seizure-free,  pre-seizure  and
seizure states.  This  also  supports  the  view  that  EEG  has  a  detectable  change  prior  to  an  absence
seizure.
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bsence  seizures  are  a  form  of  generalized  seizure  accom-
anied  with  spike-and-wave  discharges  (SWD)  in  the
lectroencephalogram  (EEG)  (Meeren  et  al.,  2002;  Gorji
t  al.,  2011).  These  sudden  and  abrupt  seizures  are  transient

igns  and/or  symptoms  of  abnormal,  excessive,  or  syn-
hronous  neural  activities  in  the  brain  (Polack  et  al.,  2007;
mor  et  al.,  2009;  Bai  et  al.,  2010),  and  may  have  significant

mpact  on  the  educational  development  of  sufferers  (Killory
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criteria  for  the  selection  of  the  seizure-free,  pre-seizure  and
seizure  data  are  that  the  interval  between  the  seizure-free
data  and  the  beginning  point  of  seizures  is  greater  than  15  s,
the  interval  is  between  0  and  2  s  prior  to  seizure  onset,  and
Dynamic  characteristics  of  absence  EEG  recordings  with  mu

et  al.,  2011).  Over  the  past  decade,  seizure  dynamics,  from
seizure-free  to  seizure  onset  and  to  seizure  ending,  have
been  investigated  using  different  mathematical  methods,
both  linear  and  non-linear  (Kramer  et  al.,  2010;  Neymotin
et  al.,  2010;  Schindler  et  al.,  2007).  To  some  extent,  these
results  indicated  that  the  characteristic  of  EEG  changes  dur-
ing  pre-seizure  phases  may  be  detectable  in  focal  epilepsy
a  few  minutes  before  the  actual  seizure  onset  (Mormann
et  al.,  2006,  2007;  Stacey  et  al.,  2011).  However,  the  pre-
diction  of  sudden  and  abrupt  seizures  by  detectable  dynamic
changes  in  the  EEG  is  still  debated  in  absence  patients
(Li  et  al.,  2007;  Stacey  and  Litt,  2008).  It  is  challeng-
ing  to  understand  the  transition  of  brain  activities  towards
an  absence  seizure  and  look  for  some  precursor  activities
(Crunelli  et  al.,  2011;  Rosso  et  al.,  2009a,  2009b;  Gupta
et  al.,  2011).  Our  previous  analysis  of  dynamic  changes  in
the  EEG  (in  Genetic  Absence  Epilepsy  Rats  from  Strasbourg)
has  demonstrated  that  EEG  epochs  prior  to  seizures  exhibit
a  higher  degree  of  regularity/predictability  than  seizure-
free  EEG  epochs,  but  they  present  a  lower  degree  than
that  in  seizure  EEG  epochs  (Li  et  al.,  2007;  Ouyang  et  al.,
2008).  Sitnikova  and  Luijtelaar  showed  that  the  SWD  activity
(in  Wistar  Albino  Glaxo/Rijswijk  rats)  is  preceded  by  short
lasting  delta  and  theta  precursor  activities  in  cortex  and
thalamus,  but  the  combination  rarely  occurs  during  control
periods  (Sitnikova  and  van  Luijtelaar,  2009;  Sitnikova,  2010;
van  Luijtelaar  et  al.,  2011).  These  EEG  precursors  in  rat  mod-
els  give  us  a  clue  in  predicting  human  absence  epilepsy.  To
investigate  possible  changes  in  the  EEG  activities  before  the
onset  of  seizures,  it  is  necessary  to  conduct  further  analysis
in  absence  patients.

Various  methods  have  been  proposed  to  analyze  the  tem-
poral  evolution  of  EEG  recordings  (Stam,  2005;  Mormann
et  al.,  2007).  In  particular,  a  series  of  entropy-based
approaches  have  been  widely  used  since  they  can  quan-
tify  the  ‘complexity’  of  an  EEG  in  health  and  disease  (Li
et  al.,  2007;  Neymotin  et  al.,  2010;  Richman  and  Moorman,
2000;  Yuan  et  al.,  2011).  Recently,  Bandt  and  Pompe  pro-
posed  the  Permutation  Entropy  (PE)  method  to  measure  the
irregularity  of  non-stationary  time  series  (Bandt  and  Pompe,
2002),  where  the  basic  idea  is  to  consider  order  relations
between  the  values  of  a  time  series  rather  than  the  values
themselves.  The  Sample  Entropy  (SampEn)  algorithm,  also
a  universally  adopted  approach,  relies  on  the  idea  that  the
counts  of  m-long  template  matching  within  a  tolerance  r  will
also  match  at  the  next  point  (Richman  and  Moorman,  2000).
Compared  with  SampEn,  the  advantages  of  the  PE  method
are  its  simplicity,  low  complexity  in  computation  without
further  model  assumptions,  and  robustness  in  the  presence
of  observational  and  dynamical  noise  (Bandt  and  Pompe,
2002;  Bandt  et  al.,  2002;  Rosso  et  al.,  2007).  These  advan-
tages  facilitate  the  use  of  PE  for  investigating  the  intrinsic
structures  in  EEG  data  since  it  could  extract  informative  fea-
tures  from  epilepsy  EEG  data  (Li  et  al.,  2007;  Nicolaou  and
Georgiou,  2012),  sleep  data  (Nicolaou  and  Georgiou,  2011)
and  anaesthesia  EEG  data  (Li  et  al.,  2008,  2010;  Olofsen
et  al.,  2008).

On  the  other  hand,  traditional  entropy  algorithms  are

single-scale  based  and  therefore  fail  to  account  for  multiple
scales  inherent  in  brain  electrical  activities  (Costa  et  al.,
2002,  2005).  To  address  the  problem,  Costa  et  al.  proposed
the  multiscale  entropy  (MSE)  (Costa  et  al.,  2002)  to  measure
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he  complexity  of  a  time  series  by  considering  the  correla-
ions  over  multiple  spatio-temporal  scales  of  a  time  series
nstead  of  a  single  scale  (Catarino  et  al.,  2011;  Mizuno  et  al.,
010).  Motivated  by  the  merits  of  PE  and  MSE,  we  pro-
ose  a  method  called  multiscale  permutation  entropy  (MPE)
o  explore  whether  PE  can  replace  SampEn  in  estimating
ultiscale  entropy  of  EEG  recordings.  Moreover,  we  exam-

ne  whether  MPE  can  be  effectively  used  to  represent  the
ynamic  characteristics  of  absence  EEG  recordings  during
ifferent  seizure  states  and  evaluate  the  effectiveness  of
PE  measures  in  classifying  different  seizure  states  by  linear
iscriminant  analysis  (LDA)  (Webb,  2006).

aterials and methods

EG  recordings

EG  recordings  were  obtained  from  7  patients  (4  males  and
 females)  with  absence  epilepsy,  aged  from  8  to  21  years
ld.  The  study  protocol  had  previously  been  approved  by
he  ethics  committee  of  Peking  University  People’s  Hos-
ital  and  the  patients  had  signed  informed  consent  that
heir  clinical  data  might  be  used  and  published  for  research
urposes.  The  EEG  data  were  recorded  by  the  Neurofile
T  digital  video  EEG  system  from  scalp  surface  electrodes
International  10-20  System)  with  256  Hz  sampling  rate  using

 16-bit  analogue-to-digital  converter  and  filtered  within  a
requency  band  of  0.5—35  Hz.  In  this  study,  EEG  recordings
rom  electrode  C3  were  selected  for  further  analysis.

To  investigate  the  dynamical  characteristics  of  EEG  data
uring  different  seizure  phases,  the  EEG  signals  of  absence
pilepsy  were  selected  and  dissected  from  seizure-free
dataset  I),  pre-seizure  (dataset  II)  and  seizure  (dataset  III)
ntervals,  where  60  2  s EEG  epochs  from  7  patients  were
elected  for  each  dataset.  The  timing  of  onset  and  off-
et  in  spike-wave  discharges  (SWDs)  was  identified  by  an
pilepsy  neurologist  (XZL),  and  these  SWDs  were  defined
s  large-amplitude  rhythmic  3—4  Hz  discharges  with  typical
pike-wave  morphology  lasting  >1.0  s.  Short  (2  s)  EEG  recor-
ings  were  used  because  1)  it  is  clinically  difficult  to  obtain
ong  EEG  recordings  during  absence  seizures  (Sadleir  et  al.,
011);  and  2)  the  duration  of  the  pre-seizure  state  is  only
bout  a  few  seconds  as  determined  from  the  rat  model  (Li
t  al.,  2007;  Ouyang  et  al.,  2008).  As  shown  in  Fig.  1, the
ig.  1  The  continuous  EEG  recordings  with  an  absence
eizure,  and  EEG  epochs  during  seizure-free,  preseizure  and
eizure  intervals  denoted  by  I,  II  and  III,  respectively.
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he  interval  is  the  first  2  s  of  the  absence  seizure,  respec-
ively.  In  our  study,  intervals  containing  major  artefacts
ere  excluded  for  further  analysis.

ultiscale  permutation  entropy

imilar  to  the  MSE  method  (Costa  et  al.,  2002),  MPE
ncorporates  two  procedures.  First,  a  ‘‘coarse-graining’’
rocess  is  applied  to  a  time  series.  For  a  given  time  series
x1,  x2,  ·  ·  ·, xL},  a  consecutive  coarse-grained  time  series  is
onstructed  by  averaging  a  successively  increasing  number
f  data  points  in  non-overlapping  windows.  Each  element
f  a  multiple  coarse-grained  time  series  y

(s)
j is  calculated

ccording  to

(s)
j =  1/s

js∑

i=(j−1)s+1

xi (1)

here  s  represents  the  scale  factor  and  1  ≤  j  ≤  L/s.  The
ength  of  each  coarse-grained  time  series  is  the  integral
art  of  L/s  and  the  coarse-grained  time  series  is  simply  the
riginal  time  series  when  s  =  1.

Next,  PE  is  calculated  for  each  coarse-grained  time  series
nd  plotted  as  a  function  of  the  scale  factor  s.  To  com-
ute  the  permutation  of  a  coarse-grained  time  series  yj,  St =
yt,  yt+1,  ·  ·  ·, xt+m−1]  is  generated  with  the  embedding  m  and
hen  arranged  in  an  increasing  order:  [yt+j1−1 ≤  yt+j2−1·  ·  ·  ≤
t+jn−1].  Given  m  different  values,  there  will  be  m!  possible
atterns  �,  also  known  as  permutations.  Let  f(�)  denotes  its
requency  in  the  time  series,  its  relative  frequency  is  p(�)  =
(�)/(L/s  −  m  +  1).  The  permutation  entropy  is  defined  as

E  =  −
m!∑

i=1

p(�i)  ln  p(�i)  (2)

The  corresponding  normalized  entropy  can  be  defined  as
E/log(m!).  The  largest  value  of  PE  is  1,  meaning  that  all
ermutations  have  an  equal  probability;  the  smallest  value
f  PE  is  zero,  indicating  that  the  time  series  is  very  regular.  In
ther  words,  the  smaller  the  value  of  PE  is,  the  more  regular
he  time  series  is.

Permutation  entropy  refers  to  the  local  order  structure
f  the  time  series,  which  can  give  a  quantitative  complexity
easure  for  a  dynamical  time  series.  Permutation  entropy

alculation  depends  only  on  the  selection  of  m.  When  m
s  too  small  (less  than  3),  the  scheme  will  not  work  well
ince  there  are  only  a  few  distinct  states  for  EEG  recor-
ings.  Often,  for  a  long  EEG  recording,  a  large  value  of  m
s  preferable.  In  this  study,  we  calculate  all  EEG  data  with

 = 4.

inear  discriminant  analysis

inear  discriminant  analysis  (LDA)  is  adopted  to  evaluate
he  capability  and  effectiveness  of  the  MPE  measures  in
lassifying  different  seizure  states.  The  basic  idea  of  LDA
s  to  project  high-dimensional  data  onto  a  low-dimensional

pace  such  that  data  are  reshaped  to  maximize  the
lass  separability  (Webb,  2006).  Consider  a  classification
roblem  with  K  classes  (K  ≥  2).  Suppose  the  data  contain

 observations  (xi,  yi),  i  =  1,  2,  ·  ·  ·, M,  with  xi ∈  Rp and

o
c
s
t

ig.  2  Representative  MPE  curves  derived  from  EEG  recor-
ings with  different  seizure  states.  PE  measure  is  evaluated  at
0 different  scales.

i ∈  {1,  2,  ·  ·  ·, K}.  LDA  is  to  find  the  linear  combination  c′x
hich  maximizes  the  ratio  of  c′Bc/c′Wc,  where  B  and  W
enote  the  p  ×  p  between-class  and  within-class  scatter
atrices,  respectively.  The  formulation  is  defined  by:

 =
K∑

k=1

nk

N
(�(k) −  �)(�(k) −  �)

T
(3)

nd

 =
K∑

k=1

nk

N
ˆ̇ k (4)

here  �(k) and ˆ̇ k,  k  =  1,  2,  · · ·, K  are  the  sample  means
nd  covariance  matrices  of  each  class  (with  nk samples)
nd  �  is  the  total  sample  mean  vector.  The  maximization
roblem  in  LDA  is  equivalent  to  solving  the  eigenproblem:
W−1B  −  �I)c  =  0.  Thus,  if  W  is  a  non-singular  matrix,
isher’s  criterion  is  maximized  when  the  projection  matrix

 is  composed  of  the  eigenvectors  of  W−1B  corresponding
o  at  most  K  −  1  non-zero  eigenvalues  (Webb,  2006).

esults

ultiscale  entropy  measure  of  EEG

he  MPE  method  is  applied  to  analysing  the  EEG  recordings
uring  different  seizure  states.  First,  the  PE  measure  is  eval-
ated  at  10  different  scales  with  the  dimension  m  =  4.  Fig.  2
hows  representative  MPE  curves  derived  from  EEG  recor-
ings  during  seizure-free,  pre-seizure  and  seizure  state,
espectively.  The  entropy  measure  for  EEG  increases  at  small
cales.  After  reaching  the  maximum  entropy,  it  becomes  sta-
le  when  the  scale  factors  increase.  Fig.  2  also  indicates  that
E  values  are  unstable  at  large  scales,  because  the  coarse-
raining  procedure  reduces  the  sample  size  of  templates  by
/s  (Park  et  al.,  2007).  The  scale  factor  s  is  an  important
arameter  in  MPE.  For  calculating  PE  of  each  coarse-grained
ime  series,  in  order  to  allow  every  possible  ordinal  pattern

f  dimension  m  to  occur  in  a  time  series  of  length  N,  the
ondition  N  ≥  m!  must  hold  and,  moreover,  N»m!  should  be
atisfied  to  avoid  undersampling  (Ouyang  et  al.,  2010).  For
his  reason,  given  m  =  4,  we  need  to  choose  N  ≥  4  ∗  4!.  To
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Fig.  3  Boxplots  for  the  entropy  PE  (top)  and  SampEn  (bottom
(I), pre-seizure  (II)  and  seizure  (III)  state.

obtain  a  more  accurate  and  reliable  evaluation  of  MPE,  scale
factors  only  with  s  ≤  5  are  considered  in  this  study.

Then,  the  MPE  measure  is  applied  to  analysing  all  180
2-s  EEG  epochs  in  this  study  (120  from  each  dataset  I,  II
and  III).  For  scale  1,  which  is  the  only  scale  considered  by
the  traditional  single-scale  based  method,  the  PE  values  for
EEG  epochs  are  averaged  at  0.558  ±  0.018,  0.515  ±  0.022
and  0.435  ±  0.024  (mean  ±  SD)  in  dataset  I,  II  and  III,
respectively,  where  the  entropy  values  in  seizure-free  and
pre-seizure  states  are  much  larger  than  those  in  seizure
state.  Similar  results  of  PE  measures  can  be  obtained  from
the  other  four  scales.  To  compare  the  extracted  entropy
information  of  EEG  between  MPE  and  MSE  methods,  we  also
apply  the  MSE  method  to  analyze  the  EEG  data.  The  details
of  MSE  can  be  found  in  (Costa  et  al.,  2002;  Ouyang  et  al.,
2009);  the  SampEn  values  for  the  EEG  epochs  on  scale  1  aver-
aged  0.578  ±  0.080  in  seizure-free  state,  0.563  ±  0.045  in
pre-seizure  state  and  0.357  ±  0.078  in  seizure  state,  respec-
tively.

Next,  in  order  to  investigate  whether  their  distributions
over  the  three  states  are  significantly  different,  the  one-way
ANOVA  test  (Hogg  and  Ledolter,  1987)  is  used  for  calculating
entropy  values  on  each  scale,  respectively.  The  population

distribution  of  the  PE  and  SampEn  of  each  scale  is  shown  in
Fig.  3  as  boxplot.  The  lower  and  upper  lines  of  the  ‘‘box’’
are  the  25th  and  75th  percentiles  of  the  sample,  the  distance
between  the  top  and  bottom  of  the  box  is  the  interquartile

d
b
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Table  1  One-way  ANOVA  with  Scheffe’s  test  for  PE  at  scale  1.

ANOVA  source  of  variation  Sums  of  squares  (SS)  Degrees

Between  Samples 0.462  2  

Within samples  0.081  177  

Total 0.543  179

Scheffe’s test: the seizure-free vs. the pre-seizure state S = 55.89 (P < 

the pre-seizure vs. the seizure state S = 195.98 (P < 0.05).
 scale  1—5  of  the  all  EEG  recordings,  grouped  by  seizure-free

ange  and  the  line  in  the  middle  of  the  box  is  the  sample
edian.  Outliers  (plus  sign)  are  cases  with  values  that  are
ore  than  1.5  times  the  interquartile  range.  The  notches

n  the  boxes  are  a graphic  confidence  interval  (95%)  about
he  median  of  a  sample.  As  seen  in  Fig.  3,  at  all  scales,  the
ntropy  values  of  PE  and  SampEn  in  the  seizure-free  and
re-seizure  state  are  higher  than  those  in  the  seizure  state.

To  statistically  test  these  observed  mean  differences,
he  one-way  ANOVA  with  Scheffe’s  post  hoc  test  (Hogg
nd  Ledolter,  1987)  is  performed  for  computing  entropy
alues  of  three  different  sets.  The  results  of  PE  at  scale
,  i.e.  the  traditional  permutation  entropy  measure,  are
hown  in  Table  1.  It  can  be  seen  that  the  F-test  (F  =  462.0)
s  significant  at  the  probability  level  of  P  <  0.05,  which
uggests  the  null  hypothesis,  i.e.,  no  differences  among
hese  three  different  groups,  should  be  rejected.  Thus,  the
pplication  of  Scheffe’s  test  to  all  pairwise  comparisons
etween  the  means  of  PE  suggests  that  the  average  PE
alues  in  the  pre-seizure  state  has  significantly  lower  values
han  those  in  the  seizure-free  state,  but  they  are  signifi-
antly  higher  than  those  in  the  seizure  state.  Similarly,  the
esults  of  SampEn  on  scale  1,  i.e.  the  traditional  sample
ntropy  measure,  are  given  in  Table  2. As  we  can  see,  the

ifferences  of  SampEn  values  cannot  be  distinguished  well
etween  the  seizure-free  and  pre-seizure  states.  Similar
tatistical  results  can  also  be  obtained  from  the  scales
—5,  at  which  the  entropy  values  in  the  seizure-free  and

 of  freedom  (DF)  Mean  square  (MS)  F-test

0.2310  462.0  P  <  0.05
0.0005

0.05); the seizure-free vs. the seizure state S = 461.18 (P < 0.05);
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Table  2  One-way  ANOVA  with  Scheffe’s  test  for  SampEn  at  scale  1.

ANOVA  source  of  variation  Sums  of  squares  (SS)  Degrees  of  freedom  (DF)  Mean  square  (MS)  F-test

Between  Samples  0.180  2  0.0900  180.0  P  <  0.05
Within samples  0.085  177  0.0005
Total 0.265  179

Scheffe’s test: the seizure-free vs. the pre-seizure state S = 0.70 (P > 0.05); the seizure-free vs. the seizure state S = 147.62 (P < 0.05);
the pre-seizure vs. the seizure state S = 128.05 (P < 0.05).

Table  3  Classification  results  of  the  MPE  measure.

Desired  result Output  result

Group  I  Group  II  Group  III

Group  I  59  1  0
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Table  4  Classification  results  of  the  MSE  measure.

Desired  result Output  result

Group  I  Group  II  Group  III

Group  I  54  6  0

e
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Group II  16  44  0
Group III  0  0  60

re-seizure  state  are  significantly  higher  than  those  in  the
eizure  state;  and  the  entropy  values  in  the  seizure-free
re  significantly  higher  than  those  in  the  pre-seizure  state.

lassification

s  shown  above,  there  is  significant  difference  among  PE
alues  of  the  seizure-free,  pre-seizure  and  seizure  states.
owever,  a  considerable  overlap  occurs  between  the  PE
alues  in  the  seizure-free  and  pre-seizure  states,  which
revents  the  traditional  single-scale  entropy  measure  from
learly  distinguishing  between  the  seizure-free  and  pre-
eizure  states.  The  performance  of  the  above  measures  for
lassifying  different  seizure  states  is  evaluated  by  linear
iscriminant  analysis  (LDA).  The  calculated  MPE  measures
re  used  as  input  data  with  5  features  (dimension  of  the
xtracted  feature  vectors  —  PE  values  on  scale  1—5)  in  LDA.
s  shown  in  Fig.  4  A,  these  features  are  projected  onto  a
wo-dimensional  space  and  the  data  are  separated  into  well-

efined  clusters.  In  more  detail,  LDA  correctly  classifies  163
ut  of  180  subjects  (as  illustrated  in  Table  3),  giving  approx-
mately  90.6%  accuracy.  The  calculated  MSE  measures  are
lso  used  as  input  data  with  5  features  (dimension  of  the

(
w
a
L

ig.  4  LDA  of  three  groups:  the  seizure-free,  pre-seizure  and  seizu
SE (B)  are  projected  ontpto  a  two-dimensional  feature  space,  resp
Group II  18  41  1
Group III  0  0  60

xtracted  feature  vectors  —  SampEn  values  on  scale  1—5)  in
DA.  In  the  same  way,  these  features  are  projected  onto  a
wo-dimensional  space,  which  is  shown  in  Fig.  4B.  The  clas-
ification  results  are  illustrated  in  Table  4  —  among  180  EEG
ecordings  in  three  groups,  155  are  correctly  classified.  The
verage  classification  accuracy  is  86.1%.  In  order  to  compare
he  performance  of  multiscale  entropy  method  with  that  of
he  traditional  single-scale  entropy  method,  the  classifica-
ion  accuracy  based  only  on  scale  1  is  calculated.  Of  180
EG  recordings  in  three  groups,  152  and  123  are  classified
orrectly  from  PE  and  SampEn,  respectively.  The  average
lassification  accuracy  is  84.4%  and  68.3%,  respectively.

iscussion

he  EEG  signal  is  a  measure  of  the  summed  activities  of
pproximately  1—100  million  neurons  lying  in  the  vicinity
f  the  recording  electrode.  Since  it  may  provide  insight
nto  the  functional  structure  and  dynamics  of  the  brain

Buzsaki,  2006),  exploration  of  hidden  dynamical  structures
ithin  EEG  signals  is  of  both  basic  and  clinical  interest
nd  has  attracted  more  and  more  attention  (Stacey  and
itt,  2008).  Nowadays,  EEG  has  become  one  of  most  useful

re  states.  The  high-dimensional  feature  vectors  of  MPE  (A)  and
ectively.
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Dynamic  characteristics  of  absence  EEG  recordings  with  mu

tools  for  studying  the  cognitive  processes  and  the  phys-
iology/pathology  of  the  brain,  especially  the  processes
involved  in  absence  seizures.

In  this  study,  we  investigat  whether  the  period  just  pre-
ceding  absence  seizures  is  characterized  by  a  significant
change  in  EEG  from  absence  patients  and  whether  this  can
serve  as  a  criterion  to  distinguish  this  period  from  seizure-
free  and  seizure  states.  To  this  end,  we  propose  the  MPE
method  to  analyze  the  dynamical  characteristics  of  EEG
data  during  different  absence  seizure  states.  For  scale  1,
it  has  been  found  that  there  is  a  significant  increase  of
the  PE  values  of  the  EEG  data  from  seizure-free  state  to
seizure  state  in  absence  epilepsy  patients.  In  addition,  the
one-way  ANOVA  with  Scheffe’s  post  hoc  analysis  indicates
that  the  PE  and  SampEn  values  in  the  seizure-free  state
are  statistically  larger  than  those  during  the  seizure  state.
Lower  entropy  values  during  the  seizure  state  suggest  that
the  regularity/predictability  of  brain  EEG  signals  increases
during  absence  seizures.  This  is  consistent  with  the  general
hypothesis  that  reduction  in  the  entropy  of  biologic  signals
is  associated  with  disease  (Costa  et  al.,  2002;  Neymotin
et  al.,  2010).  Similar  results  have  been  reported  based  on
an  approximate  entropy  measure  of  EEG  data  from  absence
epilepsy  patients  (Burioka  et  al.,  2005).  A  possible  rea-
son  is  that  the  absence  seizure  is  initiated  by  abnormally
discharging  neurons  that  recruit  and  entrain  neighbouring
neurons  into  a  critical  mass.  This  process  manifests  itself
during  the  increasing  synchronization  of  neuronal  activities
(Meeren  et  al.,  2002;  Polack  et  al.,  2007;  Amor  et  al.,  2009),
which  implies  an  increasing  regularity/predictability  of  EEG
data.  Moreover,  the  one-way  ANOVA  with  Scheffe’s  post  hoc
analysis  indicates  that  the  PE  values  in  seizure-free  state
are  statistically  larger  than  those  during  the  pre-seizure
state.  However,  there  is  no  significant  difference  between
the  seizure-free  state  and  pre-seizure  state  for  SampEn  val-
ues.  This  suggests  the  single-scale  SampEn  is  not  effective
in  discriminating  the  seizure-free  state  from  the  pre-seizure
state,  and  PE  is  a  more  appropriate  regularity/predictability
measure  for  EEG  series.  To  discriminate  among  three  epilep-
tic  seizure  states,  the  average  classification  accuracy  is
84.4%  and  68.3%  when  using  the  traditional  single-scale
entropy  PE  and  SampEn,  respectively.  These  results  are  sim-
ilar  with  the  previous  study  that  the  PE  measure  is  better
for  predicting  absence  seizures  than  the  SampEn  measure
(Li  et  al.,  2007).

On  the  other  hand,  although  the  single-scale  PE  is
statistically  higher  in  the  seizure-free  state  than  in  the
pre-seizure  state,  there  is  an  overlap  between  the  entropy
values  in  the  seizure-free  and  pre-seizure  state.  For  larger
scales,  it  has  been  found  that  the  differences  of  entropy
values  are  distinguishable  among  different  seizure  states.
To  discriminate  among  three  epileptic  seizure  states,  the
LDA  algorithm,  which  separates  samples  from  different
classes  far  away  while  keeping  samples  within  the  same
class  close  to  each  other,  was  applied  to  evaluating  the
performance  of  the  MPE  and  MSE  measures.  A  classification
accuracy  of  90.6%  is  achieved  based  on  the  newly  proposed
MPE  measure,  while  the  classification  accuracy  is  86.1%

for  the  MSE  measure.  Both  the  MPE  and  MSE  methods  can
significantly  differentiate  and  classify  different  seizure
states  in  this  dataset,  but  the  classification  accuracy  of  the
MPE  method  is  higher.  The  database  analyzed  in  this  study  is
le  permutation  entropy  analysis  251

ot  sufficiently  large  to  draw  any  definite  conclusions  con-
erning  the  distinction  among  the  seizure-free,  pre-seizure
nd  seizure  states  in  absence  epilepsy.  Nevertheless,  our
esults  provide  the  evidence  for  supporting  the  existence
f  a  pre-seizure  state  in  absence  epilepsy.  The  character-
stics  of  entropy  changes  of  EEG  could  be  considered  as  a
andidate  precursor  of  the  impending  absence  seizures.  It
s  the  intent  of  future  studies  to  test  the  MPE  method  with

 larger  database  and  cross-validate  its  performance  with
ultiple  independent  databases.
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