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ABSTRACT

Fluoroscopic images recording the real-time motion of
lung tumor lesion play an important role on lung cancer ra-
diotherapy, as these images help to facilitate the accurate
delivery of radiation dose on target tumor lesion. Deriva-
tion of tumor position in conventional lung tumor tracking
strategies is realized via either placing external surrogates on
patients or implanting internal fiducial markers in patients.
Inaccurate tumor tracking and patient safety problems are
often inevitable for these strategies. In this study, a novel
marker-less tumor tracking strategy is presented for image-
guided lung cancer radiotherapy. A fluoroscopic image is
first decomposed into low-rank and sparse components based
on robust-PCA via a split Bregman method. Then, a series
of techniques, including K-means clustering, morphological
processing, connected component analysis, etc are employed
on obtained low-rank fluoroscopic images for tumor tracking.
Clinical data obtained from 45 patients is incorporated for
experimental evaluation. Promising results are demonstrated
from the introduced strategy.

Index Terms— Mark-less Tumor Tracking, Fluoroscopic
image, Robust-PCA, Split Bregman method, Image Process-
ing

1. INTRODUCTION

Lung cancer is generally recognized as the most common
cause of cancer-related death in worldwide population. Ac-
cording to [1], lung cancer is responsible for over 1.38 mil-
lion deaths annually. Accurate diagnosis of lung cancer at its
early stage and the timely treatment thereafter is essential to
increase the survival time of patients, or even cure the disease
[2]. There are various treatment manners for lung cancer to
date, including surgery, radiotherapy, chemotherapy and pal-
liative care [2], [3]. Among them, radiotherapy eliminating
malignant cells via ionizing radiation is often essential in con-
temporary lung cancer treatment [2]. For lung cancer radio-
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Fig. 1. Example of a fluoroscopic image.

therapy, precise prediction on positions of tumor lesion along
with the respiratory cycle of patients is highly demanded, as
high-dose-rate radiation beam needs to be concentrated on
the tumor lesion and the radiation exposure towards its sur-
rounding normal tissues should be kept as low as possible [2].
Conventional tumor tracking strategies in radiotherapy rely
on markers including either external surrogates placed on the
abdomen of patients [4] or internal fiducial markers implanted
in patients [5]. However, their disadvantages are obvious: for
external surrogates, it is often hard to correlate the movement
between them and tumor lesion, resulting in lack of accuracy
in tumor position derivation; for percutaneous marker implan-
tation, patients are likely to suffer from the risk of pneumotho-
rax. Therefore, marker-less tumor tracking strategies become
more favored and necessary in lung tumor radiotherapy nowa-
days.

Fluoroscopy, which is an effective and affordable medi-
cal imaging facility to obtain fluoroscopic image sequences
about internal structures of patients, is widely incorporated in
image-based lung cancer radiotherapy [6], [7], [8], [9]. In [6],
regions-of-interest on image sequences containing discrimi-
native tumor feature are shortlisted via a principal component
analysis (PCA). In [7], nonlinear manifold learning methods,
such as locally linear embedding (LLE), local tangent space
alignment (LTSA), and Laplacian eigenmap (LAP), are incor-
porated similarly towards [6] but replacing the role of PCA for
tumor position derivation. [8] and [9] utilize diverse popular
pattern recognition tools including artificial neural network
(ANN), support vector machine (SVM), linear/non-linear re-
gression to accomplish the lung tumor tracking task on flu-
oroscopic images. For fluoroscopic images, the image qual-
ity is often poor caused by several factors (e.g. image noise
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Fig. 2. Flowchart of the introduced marker-less lung tumor tracking strategy.

and artifact, patients’ ribs occlusion obscuring the moving tu-
mor lesion, etc). An example is illustrated in Fig.1. Also,
non-tumor tissues surrounding the tumor lesion often move
together with the tumor lesion within respiratory cycles, mak-
ing it more challenging to differentiate tumor and localize its
position precisely.

In this study, a novel marker-less tumor tracking strat-
egy on fluoroscopic images for image-guided lung cancer ra-
diotherapy is presented to tackle the above mentioned chal-
lenges. The flowchart of the strategy is depicted in Fig.2. A
low-rank and sparse decomposition is applied on an original
fluoroscopic image for the first time in this study. Obtained
low-rank fluoroscopic images excluding major movement of
non-tumor tissues are beneficial to provide clearer scenario
about foreground (tumor) and background (non-tumor) for tu-
mor tracking, which is realized via a series of pattern recog-
nition and image processing techniques, including K-means
clustering, morphological processing, connected component
analysis, etc. Compared with other conventional marker-less
lung tumor tracking studies, the main merit of the presented
strategy resides in its simple implementation and relatively
low computational cost. Costly manipulation (e.g. manifold
learning in [7]) and training procedures (e.g. ANN, SVM,
regression in [8], [9]), which are commonly seen in conven-
tional mark-less lung tumor tracking studies, can be avoided
in this presented tracking strategy. Therefore, the introduced
strategy complies with the need of real-time tumor tracking in
current clinical radiotherapy better.

The organization of the paper is as follows. In Section 2,
a low-rank and sparse decomposition based on robust-PCA
is introduced. After obtaining low-rank fluoroscopic images,
Section 3 elaborates steps to track lung tumor lesion using a
series of pattern recognition and image processing techniques.
In Section 4, clinical data obtained from 45 patients are uti-
lized to evaluate the performance of the introduced tumor
tracking strategy. A compared strategy with the same track-
ing steps but directly applied on original fluoroscopic images
are implemented to reveal the superiority of low-rank fluoro-
scopic images. In Section 5, the conclusion of this study is

drawn.

2. LOW-RANK & SPARSE DECOMPOSITION ON
FLUOROSCOPIC IMAGES

As introduced in Section 1, it is challenging to localize tu-
mor lesion positions precisely on original fluoroscopic im-
ages, as the image quality is often poor and non-tumor tissues
surrounding the tumor lesion also move, making the differ-
entiation even harder. A general intuition to tackle this prob-
lem is that, the tumor tracking task should be more conve-
nient to handle, if an original fluoroscopic image χ can be
decomposed into an image component χ1 with major tumor
movement over an ideal stationary background, as well as an-
other image component χ2 containing major non-tumor tis-
sues movement. Inspired by the recent prominent progress on
robust-PCA [10], whose main idea is to recover a low-rank
matrix A from a corrupted measurement D (i.e. D = A+E,
where E denotes arbitrary error in magnitude and supposed
to be sparsely supported [10]), such a low-rank and sparse
decomposition in this tumor tracking study can be explicitly
formulated via the following optimization problem:

arg min
(χ1,χ2)

‖(χ1 + χ2)− χ‖22 + λ⋆‖χ1‖⋆ + λ‖χ2‖1 (1)

where ‖ · ‖1, ‖ · ‖2 and ‖ · ‖⋆ denote ℓ1, ℓ2, and nuclear norm,
respectively; ‖χ1‖⋆ penalizes the rank of χ1 defined as the
sum of its singular values with regularizing coefficient λ⋆;
and ‖χ2‖1 is for promoting the sparsity of χ2 with regulariz-
ing coefficient λ. In this study, a split Bregman method [11]
is incorporated to solve the optimization problem in Eq.1. At
each iteration k in the incorporated split Bregman method,
Eq.1 can be solved via the following three steps:

Step 1: χk
1 = minχ1

‖(χ1 + χk−1
2 )− χk−1‖22 + λ⋆‖χ1‖⋆(2)

Step 2: χk
2 = minχ2

‖(χk
1 + χ2)− χk−1‖22 + λ‖χ2‖1 (3)

Step 3: χk = χk−1 − (χk
1 + χk

2) (4)

For initialization (k=0), χ0 is equivalent towards the origi-
nal fluoroscopic image χ. At each iteration k, Step 1 can
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be solved via a singular value thresholding (SVT) algorithm
at a low computational cost. According to [11], the optimal
solution of Step 2 can be rapidly obtained using a shrinkage
operator χk

2 = shrink(χk−1 − χk
1 ,

λ
2 ). The whole iteration

will terminate when ‖χk+1
1 −χk

1‖ ≤ tol, in which tol denotes
an enough small change between two obtained low-rank fluo-
roscopic image χ1 within two consecutive iterations. After all
these steps are accomplished, a low-rank fluoroscopic image
free of major movement of non-tumor tissues is produced. It
will be utilized in the following tumor tracking process.

3. MARKER-LESS TUMOR TRACKING ON
LOW-RANK FLUOROSCOPIC IMAGES

After obtaining a low-rank fluoroscopic image, clustering
techniques can be applied on it directly (as illustrated in
Fig.2(a) ). The purpose of incorporating clustering here
is to assign each pixel in the low-rank fluoroscopic image
into different groups, so that pixels within the same group
share similar visual attributes. In this study, we applied the
well-known K-means clustering algorithm [12] to partition all
pixels in the low-rank fluoroscopic image into two groups, i.e.
tumor group and non-tumor group (K = 2 therein). Fig.2(a)
includes one example of a binary image result after applying
K-means clustering algorithm on a low-rank fluoroscopic im-
age. Pixels with value of 1 (black) represent the tumor group,
while pixels with value of 0 (white) belong to the non-tumor
group.

It can be noticed that, although major moving non-tumor
tissues surrounding tumor has already been identified and re-
moved as the sparse fluoroscopic image χ2 via Eq.1, some
non-tumor tissues still exist after the clustering step, as their
movement is not much and they are generally regarded as sta-
tionary background (i.e. low-rank fluoroscopic image χ1 de-
picts tumor movement over stationary background according
to Eq.1). Therefore, background subtraction and foreground
extraction steps are necessary. In this study, since the move-
ment of non-tumor tissues in low-rank fluoroscopic images
is small, a background image is obtained via multiplication
based on first few low-rank fluoroscopic images (after clus-
tering) within the whole fluoroscopic image sequence of one
patient. The foreground image excluding non-tumor tissues
of less movement is extracted via the subtraction between
obtained low-rank fluoroscopic images and their background
image. The corresponding procedure is illustrated in Fig.3.

For foreground images extracted from low-rank fluoro-
scopic images, they are likely to be deteriorated by thin line
structures and holes on tumor lesion, which are caused by
image artifact and ribs occlusion, respectively. Hence, a mor-
phological processing is applied on those foreground images
to remove unnecessary fractions. The conducted morpholog-
ical processing in this study is composed of an opening oper-
ation f ◦ s = (f ⊖ s) ⊕ s and a closing operation f • s =
(f ⊕ s)⊖ s [13], in which f indicates foreground images; s is

Fig. 3. An illustration of background subjection and fore-
ground extraction in low-rank fluoroscopic images.

Fig. 4. An example of tumor tracking results on the same
image data.

a disk-shaped structuring element of radius 1 in this study; ⊕
and ⊖ represent dilation and erosion operations, respectively.

After morphological processing, several tumor lesion can-
didate regions are available (illustrated in Fig.2(b) ). An auto-
matic shortlisting approach here for target tumor lesion is via
connected component analysis (CCA) [13]. CCA is capable
to find uniquely labeled connected components on obtained
image results after morphological processing (as shown in
Fig.2(c), different candidate regions are labeled differently).
After that, the target tumor lesion component is selected as the
one with the highest spatial correlation with shortlisted tumor
lesion in previous frames of the whole fluoroscopic image se-
quence, given the fact that tumor does not move rapidly frame
by frame within respiratory cycles. After all these steps are
performed, the tumor tracking result on one fluoroscopic im-
age can be represented via a minimum rectangle enclosing the
target tumor lesion region as illustrated in red in Fig.2(d).

4. EXPERIMENTS AND DISCUSSION

The performance of the introduced mark-less tumor tracking
strategy has been evaluated by fluoroscopic image sequences
obtained from 45 patients with lung tumor cancer. The av-
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Fig. 5. Tracking results on example fluoroscopic images from the same patient within one respiratory cycle (from left to right)
between the introduced strategy (1st row) and the compared strategy (2nd row). In each image, the yellow and red rectangle
denotes the ground-truth and the tracking result of the tumor lesion, respectively.
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Fig. 6. Boxplot of distance between centroids on all experi-
mental results.

erage duration of each image sequence is around 2 mins, in
which 24 to 40 respiratory cycles are available. In order to
demonstrate the superiority of low-rank fluoroscopic images
in tumor tracking, the same tracking steps in Section 3 are im-
plemented on original fluoroscopic images for comparison.
An example of adopting two strategies on the same fluoro-
scopic image is illustrated in Fig.4. The first row represents
the introduced strategy, while the second row is of the com-
pared one. 1&2-a depict the same original fluoroscopic image
with the same yellow rectangle enclosing the tumor lesion as
its ground truth annotated by our senior clinicians. It can be
observed that, results after morphological processing by the
compared strategy is badly influenced by surrounding non-
tumor tissues in the original fluoroscopic image (2-b), and its
tracking result determined by the selected target tumor lesion
after CCA will be deteriorated therein (2-c). For the intro-
duced strategy, low-rank fluoroscopic images with less sur-
rounding moving non-tumor tissues (1-b) can guarantee im-
proved tracking results (1-c). Tumor tracking results in a res-

piratory cycle of one patient is depicted in Fig 5. It can be
observed that tracking results via the newly introduced strat-
egy are more accurate.

In order to quantitatively evaluate the tumor tracking per-
formance, the distance between centroid of tracking results
and that of ground truth is calculated on all tracking results.
Based on those calculated results, a box-and-whisker plot is
further generated in Fig 6. In each box, a red horizontal line
is draw across each box representing the median, while upper
and lower quartiles are depicted by blue lines above and be-
low the median in each box. A vertical dashed line is drawn
from the upper and lower quartiles to their most extreme data
points, which are within a 1.5 inter-quartile range (IQR) [14].
Each data point beyond ends of a 1.5 IQR is marked by a plus
symbol. It can be observed that, the box of the introduced
strategy is significantly lower than that of the compared strat-
egy, which indicates that low-rank fluoroscopic images have
more precise tumor tracking performance (i.e. the median of
centroids distance in the introduced strategy is around 4 pix-
els, compared with the over-10-pixel median of the compared
strategy). Another important thing to observe is that, the 1.5
IQR of the introduced strategy is significantly shorter than
that of the compared strategy, which suggests that the per-
formance of the introduced tumor tracking strategy is more
stable.

5. CONCLUSION

In this study, a novel marker-less tumor tracking strategy on
low-rank fluoroscopic images for image-guided lung cancer
radiotherapy is proposed. Promising results are demonstrated
by applying the introduced strategy on real patient data. The
main contribution of this study include incorporating low-
rank and sparse decomposition for tumor tracking for the first
time as well as a new corresponding tracking strategy based
on the-first-time presented low-rank fluoroscopic images. Fu-
ture studies will be continued with more sophisticated meth-
ods within the introduced tumor tracking framework.
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