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The experimental realization of increasingly complex syn-
thetic quantum systems calls for the development of general 
theoretical methods to validate and fully exploit quantum 
resources. Quantum state tomography (QST) aims to recon-
struct the full quantum state from simple measurements, and 
therefore provides a key tool to obtain reliable analytics1–3. 
However, exact brute-force approaches to QST place a high 
demand on computational resources, making them unfeasi-
ble for anything except small systems4,5. Here we show how 
machine learning techniques can be used to perform QST of 
highly entangled states with more than a hundred qubits, 
to a high degree of accuracy. We demonstrate that machine 
learning allows one to reconstruct traditionally challenging 
many-body quantities—such as the entanglement entropy—
from simple, experimentally accessible measurements. This 
approach can benefit existing and future generations of 
devices ranging from quantum computers to ultracold-atom 
quantum simulators6–8.

Machine learning methods have been demonstrated to be par-
ticularly powerful at compressing high-dimensional data into 
low-dimensional representations9,10. Largely developed in the 
domain of data science, these techniques have recently been used 
to address fundamental questions in the domain of physical sci-
ences. Applications to quantum many-body systems have been put 
forward in the last year, for example, to classify phases of matter11–13, 
and to simulate quantum systems14.

QST is itself a data-driven problem, in which we aim to obtain a 
complete quantum-mechanical description of a system, on the basis 
of a limited set of experimentally accessible measurements. While 
compressed sensing approaches15 reduce the experimental burden 
of full QST, large systems can be studied only through techniques 
requiring a feasible number of measurements. For example, permu-
tationally invariant tomography16 makes efficient use of the symme-
tries of prototypical quantum optics states, and can be amenable to 
a large number of qubits. However, the general case of many-body 
systems is challenging for QST. In this context, matrix product states 
are the state-of-the-art tool for QST of low-entangled states17,18. For 
highly entangled quantum states resulting either from deep quan-
tum circuits or high-dimensional physical systems, alternative rep-
resentations are required for QST.

Here, we show how machine learning approaches can be used 
to find such representations. In particular, we argue that suitably 
trained artificial neural networks offer a natural and general way 
of performing QST driven by a limited amount of experimental 
data. Our approach is demonstrated on controlled artificial data 
sets, comprising measurements from several prototypical quantum 

states with a large number of degrees of freedom (qubits, spins and 
so on), which are thus hard for traditional QST approaches.

We consider here the goal of reconstructing a generic many-
body target wavefunction Ψ Ψ≡ ⟨ ∣ ⟩x x( ) , where x is some reference 
basis (for example, σz for spin- ∕1 2). To act as the model, we use a 
representation of the many-body state in terms of artificial neural 
networks14:
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where the networks pλ(x) and ϕµ(x) represent, respectively, the 
amplitude and phase of the state, and Zλ is the normalization con-
stant. The neural-network architecture we use in this work is based 
on the restricted Boltzmann machine (RBM). This architecture 
features a visible layer (describing the physical qubits) and a hid-
den layer of binary neurons, fully connected with weighted edges 
to the visible layer (see Methods). RBM states offer a compact 
variational representation of many-body quantum states, capable 
of sustaining non-trivial correlations, such as high entanglement, 
or topological features19–24. Specifically, we take pλ to be an RBM 
with parameters λ, and a separate RBM network, pµ with param-
eters µ to model the phase, ϕµ =​ log pµ(x). Our machine learning 
approach to QST is then carried out as follows. First, the RBM is 
trained on a data set consisting of a series of independent density 
measurements Ψ∣ ∣x( )b[ ] 2

 realized in a collection of bases {x[b]} of the 
N-body quantum system. During this stage, the network parameters 
(λ, µ) are optimized to maximize the data-set likelihood, in a way 
that ψ∣ ∣ ≃ ∣Ψ ∣λ μ x x( ) ( )b b

,
[ ] 2 [ ] 2 (see Methods). Once trained, ψλ,μ(x) 

approximates both the wavefunction’s amplitudes and phases, thus 
reconstructing the target state. The accuracy of the reconstruction 
can be systematically improved by increasing the number of hid-
den neurons M in the RBM for fixed N, or equivalently the den-
sity of hidden units α =​ M/N (refs 14,25). One key feature of our QST 
approach is that it needs only raw data (that is, many experimental 
snapshots coming from single measurements), rather than estimates 
of expectation values of operators1,4,16–18. This set-up implies that 
we circumvent the need to achieve low levels of intrinsic Gaussian 
noise in the evaluations of mean values of operators.

To demonstrate this approach, we start by considering QST of 
the W state, a paradigmatic N-qubit multipartite entangled wave-
function defined as

∣Ψ ⟩ = ∣ …⟩ + … + ∣… ⟩
N
1 ( 100 001 ) (2)W
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To mimic experiments, we generate several data sets with an 
increasing number of synthetic density measurements obtained by 
sampling from the W state in the σz basis. These measurements are 
used to train an RBM model featuring only the set of parameters λ,  
since the target ∣Ψ ⟩W  is real and positive in this basis. After the 
training, we sample from ψ σ∣ ∣λ ( )z 2 and build a histogram of the 
frequency of the N components ∣ …⟩ ∣ …⟩…( 100 , 010 ) . In Fig. 1a  
we show three histograms obtained with a different number of 
samples in the training data set for N =​ 20 and α =​ 1. From the 
histograms, we see that the N components converge to equal fre-
quency in the limit of large sample number, as expected for the 
W state. To better quantify the quality of this reconstruction, we 
compute the overlap ψ= ∣⟨Ψ ∣ ⟩∣λOW W  of the RBM wavefunction 
with the original W state. In Fig. 1b, OW is shown as a function of 
the number of samples in the training data sets for three differ-
ent values of N. For a system size substantially larger than what 
is currently available in experiments26, an overlap OW ~ 1 can be 
achieved with a moderate number of samples. As a comparison, 
for N =​ 8, a brute-force QST requires almost 106 measurements4. 
Our RBM achieves similar accuracy in reconstructing the wave-
function with only about 100 N-bit measurements, a number 
comparable to other state-of-the-art QST approaches15–17. To 
examine a more challenging case for QST, one can augment the W 

state with a local phase shift θ σ ∕iexp( ( ) 2)k
z  with random phase 

θ σ( )k
z  applied to each qubit. QST must now be carried out using 

the full RBM wavefunction equation (1), and trained on 2(N −​ 1) 
additional bases. In Fig. 1 we plot a comparison between the exact 
phases (Fig. 1c) and the phases learned by the RBM (Fig. 1d) for 
N =​ 20 qubits, showing very good agreement (OW =​ 0.997). We 
expect our approach to perform equally well for other paradig-
matic quantum optics states. In the Supplementary Information 
we provide more details, including an examination of the effects 
of varying α on QST of the W state, discuss overfitting, and dem-
onstrate that RBMs can encode compactly (that is, with a polyno-
mial number of hidden units) the Greenberger–Horne–Zeilinger 
and Dicke states.

We now turn to the case of more complex systems, and demon-
strate QST for two interacting many-body problems that are directly 
relevant for quantum simulators based on ultracold ions and atoms. 
To mimic such experimental scenarios, we generate artificial data 
sets by sampling different quantum states of two lattice spin models: 
the transverse-field Ising model (TFIM), with Hamiltonian

∑ ∑σ σ σ= − J h (3)
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Fig. 1 | Benchmarking the neural-network tomography of the W state. a, Histogram of the occurrence of each of the superposed states in the W state 
for N =​ 20 qubits. We plot three histograms obtained by sampling a RBM trained on a data set containing 50 (red), 1,000 (blue) and 20,000 (green) 
independent samples. b, Overlap between the W state and the wavefunction generated by the trained RBM with α =​ 1 as a function of the number of 
samples NS in the training data set. c,d, Phases θ σ( )k

z  for each of the N =​ 20 states (different colours) in the phase augmented W state. We show the 
comparison between the exact phases (c) and the phases learned by a RBM (d), trained using 6,400 samples per basis (magnitudes of the phases are 
plotted along the radial direction). Here, RBM tomography allows systematically converge to the target W state for both cases with real and complex 
wavefunction coefficients, on increasing the number of experimental samples.
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and the XXZ spin- ∕1 2 model, with Hamiltonian

∑ σ σ σ σ σ σ= Δ + + [ ( ) ] (4)
ij

i
x
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j
y
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z
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where the σi are Pauli spin operators.
First, we consider ground-state wavefunctions. Using quantum 

Monte Carlo (QMC) methods, we synthesize artificial data sets by 
sampling the exact ground states of equations (3) and (4) for differ-
ent values of the coupling parameters h and Δ​, and for nearest-neigh-
bour interactions Jij =​ J, in both one and two spatial dimensions. The 
quality of the learned wavefunctions is tested by computing various 
observables using the RBM, and comparing them with the exact val-
ues known via the QMC simulations. For the two-dimensional (2D) 
TFIM, Fig. 2a illustrates how the RBMs can reproduce the average 
values of both diagonal and off-diagonal observables to high accu-
racy for N ≳​ 100 spins. For the 2D XXZ model, Fig. 2b illustrates the 
expectation values of the diagonal σ σz z

a b  and off-diagonal σ σx x
a b  spin 

correlations, with a and b being neighbours along the lattice diagonal. 
In addition, we consider the full spin–spin σ σi

z
j
z correlation function 

for the 1D TFIM, which involves non-local correlations. Figure 2d  
shows that the reconstructed RBM correlation function closely 
matches the exact result (obtained via QMC measurements in Fig. 2c).  
Here, deviations between the RBM and QMC are compatible with 
statistical uncertainty due to the finiteness of the training set.

To go beyond the case of ground-state wavefunctions, we also con-
sider states originating from dynamics under unitary evolution. We 
focus on a case of ‘quench’ dynamics that is realizable in experiments 
with ultracold ions27. Specifically, we study 1D Ising spins initially  

prepared in the state Ψ = ∣→ → … →⟩, , ,0  (fully polarized in the  
σx basis), subject to unitary dynamics enforced by the Hamiltonian 
in equation (3) with long-range interactions ∝ ∕ ∣ − ∣ γJ i j1ij  and mag-
netic field set to zero (h =​ 0). For a given time t, we perform QST on 
the state ∣Ψ ⟩ = − ∣Ψ ⟩t i t( ) exp( ) 0  by training the RBM on spin den-
sity measurements performed in 2N +​ 1 different bases. In Fig. 2e, 
we show the overlap between the RBM wavefunction ψλ,μ(σ) and the 
time-evolved state Ψ​(σ; t) for different system sizes N, as a function 
of the number NS of samples per basis. In the lower plot, we show 
for N =​ 12 the exact (Fig. 2f) and the reconstructed phases (Fig. 2g).

For both ground and dynamically evolved states, these results 
indicate that our neural-network QST is able to obtain high-quality 
results with a moderate number of measurements, important for 
ultracold atoms and similar systems where state preparation is costly.

Finally, we turn to the important and highly non-local quantum 
quantity that is perhaps the most challenging for direct experimental 
observation28, the entanglement entropy. Consider a bipartition of the 
physical system into a region A and its complement. The second Renyi 
entropy is defined as ρ ρ= −S ( ) log(Tr( ))2 A A

2 , with the reduced density 
matrix ρA describing the subsystem A. We estimate S2 by employing 
sampling of the ‘swap’ operator29 using the wavefunction generated by 
the RBM. In Fig. 3 we show the entanglement entropy for the 1D TFIM 
with three values of the transverse field, and for the critical (Δ =​ 1) 
1D XXZ model. In both instances, we consider a chain with N =​ 20 
spins and plot the entanglement entropy as a function of the subsystem 
size ℓ ∈ ∕N[1, 2]. From this, we see that values generated from the 
RBM agree with the exact entanglement entropy to within statistical 
errors. Using our approach, an estimate of the entanglement entropy 
from experimental data can then be obtained using only simple mea-
surements of the density, currently accessible with cold atoms30.
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Fig. 2 | Tomography of ground and dynamically evolved states of many-body Hamiltonians. a–d, QST for ground states, comparing the reconstructed 
observables to those obtained with quantum Monte Carlo simulations. e–g, QST for unitary evolution of a 1D chain following a quantum quench with 
a long-range Ising Hamiltonian with γ =​ 3/4. a, Diagonal and off-diagonal magnetizations as a function of the transverse field h for the ferromagnetic 
2D TFIM on a square lattice with linear size L =​ 12 (N =​ 144). b, Two-point correlation function (diagonal and off-diagonal) between neighbouring spins 
along the diagonal of the square lattice (linear size L =​ 12) for the 2D XXZ model. Each data point is obtained with an RBM from a network trained with 
α =​ 1/4 on separate data sets. RBM QST allows here to accurately reconstruct, for each model, both diagonal and off-diagonal observables of the target 
state. In the lower panels, we show the reconstruction of the diagonal spin correlation function σ σ⟨ ⟩i

z
j
z  for the 1D TFIM with N =​ 100 sites at the critical 

point h =​ 1. c, Direct calculation on spin configurations from a test-set much larger than the training data set. d, Reconstruction of the correlations by 
sampling the trained RBM with α =​ 1/2. e, Overlap between the system wavefunction Ψ​(σ; t) and the RBM wavefunction ψλ,μ(σ) for t =​ 0.5, as a function 
of the number of samples NS per basis. In the inset we show the overlap as a function of time for different values of NS. In the lower panels, we show 
the reconstruction of the 2N phases (rearranged as a 2D array) for N =​ 12 and t =​ 0.5. f, Exact phases θ(σk) for each component Ψ​(σk;t). g, Phases ϕμ(σk) 
learned by the RBM with α =​ 1.
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Due to their power, flexibility and ease of use, unsupervised 
machine learning approaches such as those developed in this paper 
can readily be adapted to reconstruct complicated many-body quan-
tum states from a limited number of experimental measurements. Our 
results suggest that RBM approaches will perform well on physically 
relevant many-body and quantum optics states, whereas poorer per-
formance is expected for structureless, random states (as studied in the 
Supplementary Information). Feasible applications range from validat-
ing quantum computers and adiabatic simulators31, to reconstructing 
quantities that are challenging for a direct observation in experiments. 
In particular, we predict that the use of our machine learning approach 
for bosonic ultracold atom experiments will allow for the determina-
tion of the entanglement entropy on systems substantially larger than 
those currently accessible with quantum interference techniques28.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0048-5.
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Methods
Experimental measurements and Kullback–Leibler divergences. We provide 
here a detailed description of the different steps required to perform quantum 
state tomography (QST) with neural networks for many-body quantum systems. 
We concentrate on the case of systems with two local degrees of freedom (spin-
∕1 2, qubits and so on) and choose σ ≡​ σz as the reference basis for the N-body 

wavefunction σ σΨ ≡ ⟨ ∣Ψ⟩( )  we intend to reconstruct. This high-dimensional 
function can be approximated with an artificial neural network (NN). Given a 
set of input variables (for example σ =​ σ1, σ2, …​, σN), a NN is a highly nonlinear 
function whose output is determined by some internal parameters κ. The 
architecture of the network consists of a collection of elementary units, called 
neurons, connected by weighted edges. The strength of these connections, 
specified by the parameters κ, encode conditional dependence among neurons, 
in turn leading to complex correlations among the input variables. Increasing the 
number of auxiliary neurons systematically improves the expressive power of the 
NN function, which can then be used as a general-purpose approximator for the 
target wavefunction14. The goal of our tomography scheme is to find the best NN 
approximation for the many-body wavefunction, ψκ(σ), using only numerical data 
obtained through some outside means (such as simulation or experiment).

Our scheme proceeds as follows. First, we assume that a set of experimental 
measurements in a collection of bases b =​ 0, 1, 2 …​ NB is available. These 
measurements are distributed according to the probabilities σ σ∝ ∣Ψ ∣P ( ) ( )b

b b[ ] [ ] 2
,  

and thus contain information about both the amplitudes and the phases of the 
wavefunction in the reference basis σ. The goal of the NN training is to find the 
optimal set of parameters κ such that ψκ(σ) mimics as closely as possible the 
data distribution in each basis; that is, ψ σ σ∣ ∣ ≃κ P( ) ( )b

b
b[ ] 2 [ ] . This is achieved by 

searching for the NN parameters that minimize the total statistical divergence  
Ξ​(κ) between the target distributions and the reconstructed ones. Several possible 
choices can be made for Ξ​(κ). Here, we define it as the sum of the Kullback–Leibler 
(KL) divergences in each basis:

∑ ∑ ∑
ψ

κ σ
σ

σ
Ξ ≡ =

∣ ∣σ=
κ

= κ

P
P

( ) KL ( )log
( )

( )
(5)

b

N
b

b

N

b
b b

b

b
0

[ ]

0 { }

[ ]
[ ]

[ ] 2

B B

b[ ]

The total divergence Ξ​(κ) is positive definite, and attains the minimum  
value of 0 when the reconstruction is perfect in each basis: ψ σ σ∣ ∣ =κ P( ) ( )b

b
b[ ] 2 [ ] .  

Depending on the target wavefunction, a sufficiently large set of measurement 
bases must be included in order to have enough information to estimate the phases 
in the reference basis. In practice, for most states of interest it is enough to include 
a number of bases that scales only polynomially with system size.

Once the training is complete, the NN provides a compact representation 
ψκ(σ) of the target wavefunction Ψ​(σ). In turn, this representation can be used 
to efficiently compute various observables of interest, overlaps with other known 
quantum states and other information not directly accessible in the experiment. In 
the next two subsections, we describe in detail the specific parametrization of the 
NN wavefunction adopted in this work and its optimization.

The RBM wavefunction. There are many possible architectures and NNs that 
can be employed to represent a quantum many-body state. Following ref. 14, we 
employ a powerful stochastic NN called a restricted Boltzmann machine (RBM). 
The network architecture of an RBM features two layers of stochastic binary 
neurons, a visible layer σ describing the physical variables, and a hidden layer 
h. The expressive power of the model can be characterized by the ratio α =​ M/N 
between the number of hidden neurons M and visible neurons N. An RBM is also 
an energy-based model, sharing many properties of physical models in statistical 
mechanics. In particular, it associates with the graph structure a probability 
distribution given by the Boltzmann distribution

σ = ∑ ∑ ∑σ σ
κ

+ +κ κ κ
p h( , ) e (6)W h b c hij ij i j j j j i i i

where we omitted the normalization and κ now consists on the weights Wκ 
connecting the two layers and the fields (biases) bκ and cκ coupled to each visible 
and hidden neuron, respectively. The distribution (of interest) over the visible layer 
is obtained by marginalization over the hidden degrees of freedom

∑σ σ= =
∑ ∑ ∑

σ

κ κ

+ +
σκ

κ+ κ









p p h( ) ( , ) e (7)
b

h

log 1 ej j j i
ci j Wij j

The RBM wavefunction is then defined as

ψ σ
σ

= λ ϕ σ
λ μ

λ

∕μ
p

Z
( )

( )
e (8)i

,
( ) 2

where σ= ∑ λσλZ p ( ) is the normalization constant, ϕμ(σ)  =​ log pμ(σ), and λ and 
μ are the two set of parameters. Note that the sampling of configurations σ from 

ψ σ∣ ∣λ μ( ),
2 involves only the amplitude distribution pλ(σ)/Zλ . This can be achieved, 

as usual for RBMs, by performing block Gibbs sampling with the two conditional 
distributions σ∣λp h( ) and σ∣λp h( ), which can be computed exactly. This procedure is 
very efficient since each neuron in one layer of the RBM is connected only to neurons 
of a different layer, thus enabling us to sample all units (in one layer) simultaneously.

Gradients of the total divergence. The first step in the RBM's training is to build 
the data set of measurements. In general, different bases are needed to estimate 
both amplitudes and phases of the target state Ψ​(σ). We define a series of data  
sets Db for each base b =​ 1, …​, NB −​ 1, with each data set σ=

=

∣ ∣
D { }b i

b
i

D[ ]
1
b  consisting 

of ∣ ∣Db  density measurements with underlying distribution σ σ∝ ∣Ψ ∣P ( ) ( )b
b b[ ] [ ] 2

,  
where σ σσ = …( , , )b b

N
b[ ]

1
[ ] [ ]  and σ[0] =​ σ . The quantity to minimize, also called 

negative log-likelihood, is then

∑ ∑ ψκ σΞ = − ∣ ∣ ∣ ∣
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−
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∈
λ μD( ) log ( ) (9)
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,
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where we omitted here a constant term given by the sum of the the cross-entropies 
of the data sets ∑ D( )b b . The NN wavefunction in the σ[b] basis is simply obtained 
by

∑ψ ψσ σ σ σ=
σ

λ μ λ μU( ) ( , ) ( ) (10)
b

b
b

,
[ ]

{ }

[ ]
,

with Ub(σ, σ[b]) being the basis transformation matrix. The rotated state, ψλ,μ(σ[b]), 
can be computed efficiently, provided that U acts non-trivially on a limited number 
of qubits.

We proceed now to give the expressions for the various gradients needed in the 
training. By plugging equation (8) into equation (9), we obtain
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We define now the gradients σ σ= ∇κ κ κ p( ) log ( ) with κ =​ λ, μ, and the quasi-
probability distribution

σ σ σ σ σ= λ
ϕ σ ∕μQ U p( , ) ( , ) ( ) e (12)b

b
b

b i[ ] [ ] ( ) 2

Then, the derivatives of the KL divergence with respect to the parameters λ and µ 
are

∑ ∑λ μ∇ Ξ = ⟨ ⟩ −
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and
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In the expression above, we have defined the pseudo-averages:
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which can be efficiently computed directly summing over the samples in the data 
sets Db. On the other hand, the evaluation of the average

∑ σ σ⟨ ⟩ =
σ

λ
λ

λ λ
λ

 
Z

p1 ( ) ( ) (16)p
{ }

requires the knowledge of the normalization constant Zλ, which is not directly 
accessible. However, as per standard RBM training32, one can approximate this 
average by

∑ σ⟨ ⟩ ≃λ
=

λ
λ

 
n
1 ( ) (17)p

k

n

k
1

where σk are samples generated using a Markov chain Monte Carlo simulation.
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Finally, we point out that in our work we have adopted a slightly simplified 
training scheme. In particular, we break down the training into two steps. First, we 
learn the amplitudes only by optimizing the parameters λ. In this case, it is sufficient 
to minimize the KL divergence over the reference basis alone (that is, σ). This part 
of the training is essentially a standard unsupervised learning procedure, involving 
the generation of samples from the RBM33. Then, we fix the parameters λ, and use 
the measurements in the auxiliary bases to determine the optimal values of the 
phase parameters μ. This other part of the training is achieved using the gradient in 
equation (14), and thus does not require Monte Carlo sampling from the NN.

Training the neural network. For a given set of parameters (that is, μ), the easiest 
way to numerically minimize the total divergence, equation (9), is by using simple 
stochastic gradient descent33. Each parameter μj is updated as

μ μ η← − ⟨ ⟩g (18)j j j B

where the gradient step η is called the learning rate and the gradient gj is averaged 
over a batch B (∣ ∣ ≪ ∣ ∣B D ) of samples drawn randomly from the full data set:

∑⟨ ⟩ =
∣ ∣

⟨ ⟩
σ

μ
∈

g
B
1 Im{ } (19)j B

B Qj
b

Stochastic gradient descent is the optimization method used to learn the 
amplitudes of each physical systems presented in the paper. However, for the 
learning of the phases, we instead implement the natural gradient descent 
method34, which is found to be more effective, although at the cost of increased 
computational resources. In this case, we update the parameters as

∑μ μ η← − ⟨ ⟩ ⟨ ⟩−S g (20)j j
i

ij B j B

1

where we have introduced the Fisher information matrix:

∑⟨ ⟩ =
∣ ∣
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σ∈

μ μ S
B
1 Im{ }Im{ } (21)ij B

B
Q Qi
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b

The learning rate magnitude η is set to

∑
η

η
=

⟨ ⟩ × ⟨ ⟩ ⟨ ⟩S g g (22)
ij ij B i B j B

0

with some initial learning rate η0. The matrix ⟨ ⟩Sij B
 takes into account the fact that, 

since the parametric dependence of the RBM function is nonlinear, a small change 
in some parameters may correspond to a very large change in the distribution. In 
this way, one implicitly uses an adaptive learning rate for each parameter μj and 
speeds up the optimization compared to the simplest gradient descent. We note 
that a very similar technique is successfully used in quantum Monte Carlo for 
optimizing high-dimensional variational wavefunctions35,36. Similarly to our case, 
noisy gradients, which come from the Monte Carlo statistical evaluation of energy 
derivatives with respect to the parameters, are present, while the matrix S is instead 
given by the covariance matrix of these forces. Since the matrix ⟨ ⟩Sij B

 is affected by 
statistical noise, we regularize it by adding a small diagonal offset, thus improving 
the stability of the optimization.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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