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With the development of theory of Berry phase, research on polarization using topological
paradigm has attracted increasing interests recently. The fundamental theory of polarization
under Berry phase perspective was proposed and then developed by R.D.King-Smith[1] and
D.Vanderbilt[2]. In the first part of this report, we briefly introduced the basic therry. Then
we followed their work and utilized ABINIT to calculate the Berry phase in AlAs under zero field
and concluded that polarization from Berry phase analysis was in excellent agreement with DFPT.
Next, we calculated the Berray phase in AlAs under finite field from which we deduced the Born
effective charge and electric susceptibility. The results were consistent with DFPT method with
acceptable deviation.

I. BASIC THEORY OF BERRY PHASE AND
POLARIZATION

Berry phase was first introduced by Sir Michael Victor
Berry in 1984 which depicts the geometry phase the sys-
tem obtains after a cyclic adiabatic process. The general
form of non-degenerate Berry phase is

γn = i

∮
C

⟨n, t|∇R|n, t⟩ dR (1)

where R is an arbitrary time-dependent variable of the
Hamiltonian in the adiabatic evolution. Among all the
time-dependent variables and adiabetic loops, wave vec-
tor of quasi-momentum and the boundary of first Bril-
louin zone is of great interest since it is connected with
band structure and polarization of material. The phase
is defined as

γn = i

∮
BZ

⟨n, t|∇k|n, t⟩ dk (2)

which is called Zak phase. Here, k represents quasi-
momentum while BZ denotes the first Brillouin zone. In
order to straddle the gap between Berry phase and po-
larization, we first write the fomular of drift velocity.[3]
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The first term is the common drift velocity when Hamil-
tonian is time independent while the second is exactly
the Berry curvature. As a consequence, a net current
can be generated. Since the integral of ∂ϵn(q)

ℏ∂q over BZ
equals zero, the current is in the form

j = e
∑
n

∫
BZ

dq

2π
Ωn

qt (4)

Thus, we have deduced the current created by adiabatic
evolution of bands, which is equivalent to the integral on
Berry curvature over BZ[3].

On the other hand, with Gauss’s law and equation of
continuity , we have

∇ · P = −ρ
∂ρ

∂t
+∇ · j = 0

(5)

Thus, with equation (4), time derivative of polarization
can be determined up to a field without source.

∇ · (∂P
∂t

− j) = 0 (6)

Change of polarization is

∆P = e
∑
n

∫
dt

∫
BZ

dq

2π
Ωn

qt (7)

It can be seen that polarization is determined by Berry
phase accumulated after an adiabetic process. In ad-
dition, by defining localized Wannier functions, we can
understand equation (7) in a more direct and heuristic
way.

Wannier function is defined as,

Wn
RI

(r) =
1√
N

∑
k

e−ik·RIψn
k(r) (8)

in which N is the number of primitive cells, RI is the
center where the Wannier function localized and ψn

k(r)
is Block wave function denoted as ψn

k(r) = eik·runk(r).
Moreover, Wannier functions constitute an othonormal
basis set which is essential in lattice model and tight
binding picture. With inverse Fourier transformation
and apply equation (8) into (7), we can get

∆P = −e
∑
n

∑
I

∫
drr|Wn

RI
((r))|2 (9)

It can be interpreted that the P is the dipole momentum
of Wannier charge density, which is consistent with clas-
sical picture of polarization. This connection between
microscopic property of materials and topological phase
demonstrates the fundamental role of Berry phase and
topological structure.
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With equation (9), we can in principal calculate change
of polarization and current. However, in practice, the
summation over all bands is intractable and unnecessary.
For fermionic system, bands near fermi energy is most
intereted thus in secion II, calculation of polarization is
restricted to finite occupied bands.

Morever, not only conductive electrons but also lattice
contribute to polarization according to equation (10)

P =
1

V
[−

∑
I

ZIRI +

∫
drρe(r)] (10)

where the summation and integral is over the whole piece
of material. Thus, in section II we include the influence
of lattice displacement to achieve more precise analysis
and it turns out lattice ions’ contribution are 2 ∼ 4 orders
higher than electrons.

II. NUMERICAL CALCULATION OF
POLARIZATION IN ALAS

A. Berry phase calculation of polarization in zero
field

In this part, we first calculate polarization of AlAs in
zero field and analyze three different situations in which
τ = 0(corresponding to optimized structure), τ = +0.01
and τ = −0.01(corresponding to Al displaces from op-
timized location 0.01 Bohr right and left). In order to
finish the Berry phase calculation, parameters berryopt
and rfdir are needed. Berryopt specifies the use of Berry
phase in calculation and rfdir defines the direction along
which reponse functions are calculated. Here, with the
assignment of berryopt=-1 and rfdir=(1,1,1), total polar-
ization for reciprocal lattice and real space lattice is ob-
tained. The results are shown in Figure.1, where Al atom
is at optimized position in figure a and on the right(left)
+0.01(-0.01) (a.u.) of the optimized position in figure
b(c). From previous data, we notice that ionic polar-
ization is 3 orders higher than the electron Berry phase
and we can calculate the Born effective charge through
equation (11),

Z∗ = Ω0
P (τ = +0.01)− P (τ = −0.01)

2τ
= 2.06 (11)

where Ω0 is the volume of the primitive cell in atomic
unit. Born effective charge depicts the extent to which
a change of polarization can be generated by the atom
displacement.

Moreover, we analyse the piezoelectric constant by
equation (12),

dαβ =
∂Pα

∂σβ
(12)

where σ is the strain at the position. From the out-
put file, strain at τ = +0.01 and τ = −0.01 are ob-
tained and the proper piezoelectric constant equals -
0.6491(C/m2). In order to confirm the result, we also

calculate the piezoelectric constant using DFPT method
which gives -0.6491(C/m2) in clamped ion condition and
0.0430(C/m2) in relaxed ion condition. It turns out that
the Berry phase calculation is consistent with clamped
ion DFPT while the discrepancy between relaxed ion and
clamped ion can be explained that relaxed atoms can re-
distribute to minimize the total energy which in turn
reduces the polarization.

B. Finite electric field calculations

In this part, polarization with finite electric field is
calculated. Compared to zero field situation, finite field
calculation is more sutble since the electric field breaks
the discrete translation symmetry, resulting in the fail-
ure of band structure. Thus, we first calculate the Berry
phase at zero field and then we take increment steps cor-
responding to various value of electric field and use wave-
function obtained from former step to make the system
evolve adiabatically .

In the calculation, we choose the parameter set as
E = 0, E = +0.0001, E = −0.0001 and the direction
of electric field is along (111). From the output file(the
results are shown in figure.2), we can deduce the Born
effective charge from equation (13) by using the data of
forces under different electric fields.

FA,i = Z∗
A,iiE +Ω0

dχ

dτ
E2 (13)

We can see that opposite electric field forces have same
magnitude(relative error 10−3) with different sign which
means the qudratic term is negligible. Therefore, we find
that the Born effective charge is

Z∗
Al

FAl(E = +0.0001)− FAl(E = −0.0001)

2× 0.0002
= 2.06

(14)
which matches the result in zero field Berry phase cal-
culation and clamped ion DFPT. In order to determine
the coefficient dχ

dτ , we need to consider higher field that
requires much denser k-grid to converge the calculation,
which is covered in the tutorial on static Non-linear prop-
erties.

The output file also include the polarization data under
electric field mentioned above(results shown in figure.3).
For polarization under electric field,we have

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk (15)

where χ(1)
ij is the linear susceptibility tensor while χ(2)

ijk is
the quadratic susceptibility tensor. From figure.3 we find
that the quadratic term is ignorable which is the case
in force-electric field relation. Thus the linear optical
dielectric susceptibility is extracted as

χ
(1)
11 =

P1(E = +0.0001)− P1(E = −0.0001)

2× 0.0001
= 0.56756

(16)
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(a) τ = 0

(b) τ = +0.01

(c) τ = −0.01

FIG. 1. Polarization under different displacement(a.u.).

(a) E = 0

(b) E = +0.0001

(c) E = −0.0001

FIG. 2. Force under different electric fields.(a.u.)

As a consequence, the optical dielectric constant is

ϵ11 = 1 + 4πχ
(1)
11 = 8.13 (17)

On the contrary, result from DFPT is 9.20. This differ-
ence comes from the slow pace at which the finite field
calculation converges thus there still exists much to im-
prove for this Berry phase-based method.

III. CONCLUSIONS

In this report, we followed the Ffield tutorial file and
calculated the polarization under sero field and finite field
by utilizing Berry phase method. First, we conducted
zero field calculation and compared them with the result
produced by DFPT method. It turned out Berry phase
method was consistent with clamped ion regime while re-
laxed ion regime counteracted the polarization. Then we
expanded our analysis to finite field. Since finite electric

field break the discrete translation symmetry, we adia-
batically manipulated the wave function under zero field
to finite field and calculated the polarization, Born effe-
tive charge, piezoelectric constant and dielectric suscep-
tibility. In this situation, small gap between two method
occurred. According to tutorial file, denser k-grid was
necessery for finite field calcultion convergence and the
stride also influenced the accuracy of former method.
Therefore, there exists much subtleties to be explored.
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(a) E = 0

(b) E = +0.0001

(c) E = −0.0001

FIG. 3. Polarization under different electric fields(a.u.).
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