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ABINIT is a software suite to calculate the optical, mechanical, vibrational, and other observable
properties of materials based on the density function theory (DFT). In this report, we present some
numerical calculation related the spin property of electrons, i.e. magnetism, antiferromagnetism
and spin-orbital coupling. Abundant techniques are used in the spin-dependent calculation, and
relatively accurate result is obtained, compared with the experiments.

I. THEORY AND ALGORITHM

In this report, we calculate the magnetic property of Fe with DFT method, as a practice of spin-dependent numerical
calculation. In the homogeneous electron gas, the energy of electrons is comprised of kinetic energy Ek and exchange
energy Ex. Base on the uncertainty relation, the momentum of the electron is proportion to 1/rs, therefore, the kinetic

energy has the form Ek ∝ r−2s ∝ n
2/3
e , where rs is the average distance of electrons, and ne is the average density of

electrons. Meanwhile, from quantum Monte Carlo method, one can show that the exchange energy has the following

form Ex ∝ −r−1s ∝ −n
1/3
e . As a result, the full energy is

E = ne(Ek + Ex) = An5/3e −Bn4/3
e . (1)

One can observe that the total energy is dependent on the electron density explicitly.
In the discussion above, we do not include the spin freedom into consideration. Here, note that ne = n↑+n↓. Based

on the fact that only the electrons with the same spin can have a non-vanishing exchange energy, the total energy can

be separated into two parts which represent the different spin orientations, i.e. E = E↑+E↓, and Eσ = An
5/3
σ −Bn4/3

σ .
In a non-magnetic system, the population of spin-up electrons is the same as the one of spin-down electrons, i.e.

n↑ = n↓ = ne/2. Hence,

Enon−mag = 2E
(ne

2

)
. (2)

However, in the magnetic system, there is a population difference between the electrons of different spin orientations.
Denote n↑ = ne/2 + δn and n↓ = ne/2− δn, then,

Emag = E
(ne

2
+ δn

)
+ E

(ne
2
− δn

)
(3)

If Enon−mag < Emag, the system would become non magnetic. Likewise, if Enon−mag > Emag, which means that
the magnetic state is energy preferable, the system would become magnetic with non zero population difference of
electron in different spin orientations. One can show the magnetic property is related to the concavity and convexity
of the energy function E dependence of average electron density ne.

Suppose the ground state of such system is magnetic, we have

Ehomoxc = n↑Ehomoxc (n↑) + n↓Ehomoxc (n↓), (4)

while the potetial is defined as

V σxc =
∂Ehomoxc

∂nσ
= Ehomoxc (nσ) + nσ

dEhomoxc

dn

∣∣∣∣∣
n=nσ

. (5)

In the colinear spin configuration, where the spin is along the z direction, m(r) = m(r)ẑ one can write down the
Kohn-Sham Hamiltonian as

HKS = −1

2
∇2 + Vion−e(r) + VH(r) +

(
V ↑xc(r, n↑(r)) 0

0 V ↓xc(r, n↓(r))

)
. (6)
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However, for noncolinear spin configuration, the direction of magnetization is dependent on the real space coordinate

r, i.e. m(r) = m(r)d̂(r). As a result,

HKS = −1

2
∇2 + Vion−e(r) + VH(r) + U†d(r)

(
V ↑xc(r, n↑(r)) 0

0 V ↓xc(r, n↓(r))

)
Ud(r). (7)

With the Kohn-Sham Hamiltonian given above, one can conduct the two-component self-consistent DFT calculation.

II. NUMERICAL CALCULATION

We first calculate the magnetism of bcc Fe in a non-magnetic DFT calculation and magnetic DFT calculation. The
non-magnetic calculation is the same as the calculation we conducted in the former report, while in the magnetic
calculation we specify two new input variables, named nsppol, which gives the number of spin polarization, and
spinat, which gives the initial electronic spin-magnetization for each atom in the unit of ~/2.

Due to the calculation, we find that the occupation in each bands in different for up and down spins, which indicates
that the energy eigenvalues are shifted, due to the alternation of exchange-correlation potential, and therefore of
the total effective potential. Note that the exchange-correlation is proportional to the density of spin-up or spin-
down electrons independently. The magnetization density is the difference between the up and down densities. The
magnetization density, divided by the total density is denoted as zeta, which quantifies the magnetization. In the
output file, we find that the zeta varies from points to points, and has minimum and maximum value. The total
magnetization integrated in the unit cell is 1.9674 in Bohr magneton, as a difference of spin-up occupation number
4.9867 and spin-down occupation number 3.0163. Moreover, the non-magnetic method shows the system energy as
−2.46617 Hartree while the magnetic method shows the system energy as −2.46708 Hartree, which is lower than the
result from non-magnetic calculation. This means that the magnetic ground state is energetically favored, as expected
since bcc Fe is a ferromagnet.

FIG. 1. Density of state from non-magnetic calculation of bcc Fe. The yellow line is the integrated density of state, while the
other three lines are the density of state with different smooth parameters.

The density of state from the non-magnetic and magnetic calculation is plotted in Fig.1 and Fig.2. We observe
that the spin up and down DOS have been shifted with respect to each other. The integrated density of states yields
the number of electrons for each spin direction, and we see the magnetization which arises from the fact that there
are more up than down electrons at the Fermi level, which is −0.26471 Hartree in the magnetic calculation.

Then, we take fcc Fe, which is in an antiferromagnetic order, as our second example. Here, we conduct an
antiferromagnetic calculation by selecting the input variable nsppol as 1, and nspden as 2. Like the former magnetic
calculation, we set the spinat following the requirement of antiferromagnetism. In the calculation, there are two Fe
atoms in one unit cell with the opposite spin orientations.
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FIG. 2. Density of state from magnetic calculation of bcc Fe. The yellow line is the integrated density of state, while the other
three lines are the density of state with different smooth parameters.

The computation result reveals that the magnetization of each atoms is 0.33696 and −0.33693, respectively. Fur-
thermore, if we use the cut3d tool, which performs an integration of the magnetization in a cube of size acell/2 around
each atom. Note that the overall magnetization for antiferromagnetism is zero, and we cannot analysis the density of
state for spin up or down electrons to directly observe the magnetic order of the antiferromagnetic system, as shown
in Fig.3.

Instead of treating fcc Fe directly as an antiferromagnetic material, we can start the calculation without any
hypothesis on its magnetic structure. In this case, we will not predesignate the initial spins of the atoms. In this
calculation, we use the angular momentum projected densities of state. In such calculation, we specify natsph,
iatsph and ratsph.

FIG. 3. Density of state from antiferromagnetic calculation of fcc Fe. The yellow line is the integrated density of state, while
the other three lines are the density of state with different smooth parameters.
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After the calculation, we can see the density of state which is labeled with the angular momentum. In the output
file, we find that the energy of the system is −4.9249 Hartree, which matches the result from the antiferromagnetic
calculation. Additionally, we see the face-centered atom and the cornered atom have the opposite magnetization. The
difference of up and down density is 0.395989 and its opposite.

As the last experiment in this report, we conduct a calculation where the spin-orbital coupling is taken into
the consideration. With a new pseudopotential, which has already contained the spin-orbital coupling, i.e. HGH
pseudopotential with semicore states. In such calculation, we can recover the splitting of the atomic level. In the
program, we consider 26 bands in the tantalum, and the energy of each bands are shown in the following block.

Information of band structure calculation

Eigenva lues ( ha r t r e e ) f o r nkpt= 1 k po in t s :
kpt# 1 , nband= 26 , wtk= 1.00000 , kpt= 0.0000 0 .0000
0 .0000 ( reduced coord )
−2.43258 −2.43258 −1.67294 −1.67294 −1.35468 −1.35468
−1.35468 −1.35468 −0.16788 −0.16788 −0.11629 −0.11629
−0.11629 −0.11629 −0.09221 −0.09221 −0.09120 −0.09120
−0.09120 −0.09120 −0.00959 −0.00959 0.01473 0.01473
0.01473 0.01473

One can show that the first two bands are s-orbital, while the latter six bands are the splitting p-orbital. The
following two bands are s-orbital again, while the latter ten bands are from d-orbital. There are splittings in both
p-orbital and d-orbital, due to the finite size of the simulation box, and in particular the cubic shape, which gives
a small crystal field splitting of the d-orbitals between eg and t2g states. We can calculate the splitting of the level
based on the former data, and find it is in a good agreement with the NIST data.
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