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ABINIT is a software suite to calculate the optical, mechanical, vibrational, and other observable
properties of materials based on the density function theory (DFT). In this report, we show the basic
application with such software, as a good opportunity of learning to use various tunable variables
in the software suite. Specifically, we show the calculation of crystalline silicon in this report, which
corresponds to the tutorial Base3 of ABINIT.

I. THEORY AND ALGORITHM

In this report, we will use DFT method to calculation the total energy, the lattice parameter and also the band
structure of the crystalline silicon. We first introduce the basic structure of crystalline silicon.

Crystalline silicon is the crystalline forms of silicon, either multi-crystallin consisting of small crystals, or mono-
crystalline silicon. Crystalline silicon is in the same pattern as diamond, in a structure which Ashcroft and Mermin call
“two interpenetrating face-centered cubic” primitive lattices. The cubic side for silicon is 0.543 nm, which corresponds
to 10.18 Bohr in atomic unit. In every lattice point, there are two silicon atoms. In the lattice frame, supposing one
of the atom locates at the origin, the other atom locates at (1/4, 1/4, 1/4) in the unit of lattice constant a = 10.18
Bohr for silicon crystalline. The primitive vectors are typically defined as (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0) in the
unit of lattice constant.

Then, let’s have a brief review of density function theory, which plays a dominant role in this course. For the
interacting electrons, the Hohenberg-Kohn (HK) variational principle takes the forms

Ev[ñ(r)] =

∫
v(r)ñ(r) + Ts(ñ(r)) +

1

2

∫
ñ(r)ñ(r′)

|r− r′|
drdr′ + Exc[ñ(r)] > E, (1)

where v(r) is the potential induced by the external field, ñ(r) is the trial wave function, Ts[ñ(r)] is the kinetic energy
functional for non-interacting electrons, and Exc is the so-called exchange-correlation energy functional, which accounts
for the Fermion property of the electrons, as an additional term compared with classical theory. The corresponding
Euler-Lagrange equation for a given number of electrons has the form,

δEv[ñ(r)] =

∫
δñ(r)

{
veff(r) +

δ

δñ(r)
Ts[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

− ε

}
= 0, (2)

where

veff(r) = v(r) +

∫
n(r′)

|r− r′|
dr′ + vxc(r) (3)

is the effective potential felt by the electrons, and

vxc(r) =
δ

δñ(r)
Exc[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

(4)

is the exchange-correlation energy. One can show that such functional minimization density n(r) can be given by
solving the single-particle equation (

−1

2
∇2 + veff(r)− εj

)
ϕj(r) = 0, (5)

with

n(r) =

N∑
j=1

|ϕj(r)|2, (6)
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veff = v(r) +

∫
n(r′)

|r− r′|
dr′ + vxc(r), (7)

where vxc(r) is the local exchange-correlation potential, depending functionally on the entire density distribution n(r).
Typically, we denote − 1

2∇
2 +veff as the Hamiltonian HKS for KS equation. These self-consistent equations are called

Kohn-Sham (KS) equations. Note that if we neglect the property of fermion, and thus neglect the exchange-correlation
term, the equation reduces to the self-consistent Hartree equations.

However, we note that Exc[ñ(r)], which is in a very complicated dependence of ñ(r), is difficult to calculate, and
typically we apply some approximations to simplify the calculation. Local-density approximation (LDA) is the simple
but powerful approximation, which says

ELDA
xc =

∫
exc(n(r))n(r)dr, (8)

where exc(n) is the exchange-correlation energy per particle of a uniform electron gas of density n, which is further
given by

exc(n) = ex(n) + ec(n) = −0.458

rs
− 0.44

rs + 7.8
. (9)

With LDA, we can simplify the calculation of DFT. Start with a trial wave function, we can solve the self-consistent
KS equation to find the ground state of the system, which is the energy minimum point.

Practically, we can write the potential in the plane wave basis of momentum space, i.e.

Veff(r) = Veff(r + R) =
∑
G

Veff(G)eiG·r, G ·R = 2πn, (10)

therefore,

HKS =
∑
k

1

2
k2c†kck +

∑
G

Veff(G)c†k+Gck + h.c. (11)

In the momentum space, from the trial density function n(r), one can calculate the exchange-correlation potential
vxc, and combine it with the potential of lattice, and obtain the KS Hamiltonian HKS . Then one can diagonalize
the Hamiltonian to calculate the eigenfunction. Note that people typically set a cut off value for the momentum G
to further simplify the calculation. With the new eigenfunction, one can get the new electron density n(r), combined
which with the old trial density function we can get the new trial function. One can conduct several iterations until
the program reach convergence, i.e. with the exchange-correlation potential given by the trial electron density, one can
calculate the ground state electron density that matches exactly with the trial electron density (in a given accuracy).

Note that due to the rapid oscillation of valence electrons in core region and the tightly-bound core orbitals, the
cut-off value for the plane wave basis is reasonably high. In this case, people usually replace the ionic potential with
a pseudopotential, which is smoother in the core region compared with the real potential. Based on the fact that the
scattering from the two potentials is indistinguishable outside the core region, which dominates most of the electronic
property people are interested in.

II. NUMERICAL CALCULATION

To calculate the electronic property of silicon crystalline, we identify the following input parameters:

Information about silicon crystalline

#D e f i n i t i o n o f the un i t c e l l
a c e l l 3∗10.18 # This i s equ iva l en t to 10 .18 10 .18 10 .18
rprim 0 .0 0 .5 0 .5 # In t u t o r i a l s 1 and 2 , the se p r i m i t i v e ve c to r s

0 . 5 0 .0 0 . 5 # ( to be s c a l e d by a c e l l ) were 1 0 0 0 1 0 0 0 1
0 .5 0 .5 0 . 0 # that i s , the d e f a u l t .

#D e f i n i t i o n o f the atom types
ntypat 1 # There i s only one type o f atom
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znuc l 14 # The keyword ” znuc l ” r e f e r s to the atomic number o f the
# p o s s i b l e type ( s ) o f atom . The pseudopotent i a l ( s )
# mentioned in the ” f i l e s ” f i l e must correspond
# to the type ( s ) o f atom . Here , the only type i s S i l i c o n .

#D e f i n i t i o n o f the atoms
natom 2 # There are two atoms
typat 1 1 # They both are o f type 1 , that i s , S i l i c o n .
xred # This keyword i n d i c a t e that the l o c a t i o n o f the atoms

# w i l l f o l l ow , one t r i p l e t o f number f o r each atom
0 .0 0 .0 0 .0 # T r i p l e t g i v ing the REDUCED coord inate o f atom 1 .
1/4 1/4 1/4 # T r i p l e t g i v ing the REDUCED coord inate o f atom 2 .

# Note the use o f f r a c t i o n s ( remember the l i m i t e d
# i n t e r p r e t e r c a p a b i l i t i e s o f ABINIT)

The lattice constant is given by acell, i.e. 10.18 Bohr. Then, the primitive vector is given by rprim. The number
of the element species is ntypat. The species of the atom type is given by znucl, i.e. the atomic number of the
element, for silicon crystalline, is 14. In a single lattice point, the number of atoms is natom, the type and position
of which is determined by typat and xred in the unit of lattice constant.

Then, we should give the parameters related to the DFT calculation, which select calculation techniques and options.

Information about the DFT method

#D e f i n i t i o n o f the planewave b a s i s s e t
ecut 8 .0 # Maximal k i n e t i c energy cut−o f f , in Hartree

#D e f i n i t i o n o f the k−po int g r id
kptopt 1 # Option f o r the automatic gene ra t i on o f k points , tak ing

# in to account the symmetry
ngkpt 2 2 2 # This i s a 2x2x2 g r id based on the p r i m i t i v e ve c t o r s
n s h i f t k 4 # of the r e c i p r o c a l space ( that form a BCC l a t t i c e ! ) ,

# repeated four times , with d i f f e r e n t s h i f t s :
s h i f t k 0 .5 0 . 5 0 . 5

0 .5 0 .0 0 . 0
0 .0 0 .5 0 . 0
0 .0 0 .0 0 . 5

# In c a r t e s i a n coord inate s , t h i s g r id i s s imple cubic , and
# a c t u a l l y corresponds to the
# so−c a l l e d 4x4x4 Monkhorst−Pack gr id

#D e f i n i t i o n o f the SCF procedure
nstep 10 # Maximal number o f SCF c y c l e s
t o l d f e 1 .0 d−6 # Wil l stop when , twice in a row , the d i f f e r e n c e

# between two conse cu t i v e e v a l u a t i o n s o f t o t a l energy
# d i f f e r by l e s s than t o l d f e ( in Hartree )
# This va lue i s way too l a r g e f o r most r e a l i s t i c
# s t u d i e s o f m a t e r i a l s

diemac 12 .0 # Although t h i s i s not mandatory , i t i s worth to
# precond i t i on the SCF c y c l e . The model d i e l e c t r i c
# func t i on used as the standard p r e c o n d i t i o n e r
# i s de s c r ibed in the ” d i e l n g ” input v a r i a b l e s e c t i o n .
# Here , we f o l l o w the p r e s c r i p t i o n f o r bulk s i l i c o n .

ecut gives the maximal cut-off kinetic energy in the unit of Hartree. Typically, one can obtain better accuracy
with larger cut-off energy with large consumption of computation resource. kptopt controls the set up of the k-points
list. Here, we select the mode in which the program take the symmetry full into consideration to generate k points
in the irreducible Brillouin Zone only. Often, the k points will form a lattice in reciprocal space. In this case, one
will also aim at initializing input variables that give the reciprocal of this k-point lattice, as well as its shift with
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respect to the origin: ngkpt or kptrlatt, as well as on nshiftk and shiftk. In the calculation of silicon crystalline,
we specify the parameters related to k points generation by Monkhorst-Pack sampling, which is a efficient and usual
sampling method used in the case of FCC lattice. Further more, nstep gives the maximal number of iterations in
a self-consistent field (SCF) or non-SCF run. Here, 10 is adequate for the program to reach the designed accuracy.
toldfe shows the designed accuracy of the total energy of system.

Before we conduct the formal run, we should confirm that the parameters related to the computation method is
adequate for our study. First, we will test ngkpt, and set it as 2 2 2, 4 4 4, 6 6 6 and 8 8 8. We find that the energy
difference for the latter two dataset is rather small, say 0.000004 Hartree. Here, we get the converged value at fixed
acell and ecut is -8.8726 Ha. In the following calculation, we focus on the former two datasets, i.e. ngkpt is 2 2 2
or 4 4 4, for simplicity.

Then, we test whether the lattice constant acell given in the former text is precise or not. We use the following
code to finish the automatic optimization of cell shape and volume.

Determination of the lattice parameters

o p t c e l l 1
ionmov 2
ntime 10
di latmx 1 .05
ecutsm 0 .5

And the result is

Result of lattice parameters Determination

a c e l l 1 1.0233363682E+01 1.0233363682E+01 1.0233363682E+01 Bohr
a c e l l 2 1.0216447241E+01 1.0216447241E+01 1.0216447241E+01 Bohr

for ngkpt is 2 2 2 or 4 4 4. The difference of the lattice constant computed with different k points is only 0.1%.
We can believe that the converged lattice constant for silicon crystalline in LDA approximation with the specific
pseudopotential (14si.pspnc) is 10.216 Bohr, which corresponds to 5.406 Angstrom. We mention that the experiment
value is 5.431 Angstrom at 25 degree Celsius. Therefore, we can fix acell as 10.216 Ha, and the grid of k-points
ngkpt as 4 4 4 in the following calculation.

The band structure is computed by solving the KS equation for different k points along different lines of Brillouin
zone. As an example, we can make a L-Γ-X-(U-)Γ circuit, with 10, 12 and 17 divisions for each line. We can use the
following code to set the lines in the Brillouin zone

Information of band structure calculation

i s c f 2 −2
getden2 −1
kptopt2 −3
nband2 8
ndivk2 10 12 17 # 10 , 12 and 17 d i v i s i o n s o f the 3 segments , de l im i t ed

# by 4 po in t s .
kptbounds2 0 .5 0 .0 0 .0 # L point

0 .0 0 .0 0 . 0 # Gamma point
0 .0 0 .5 0 . 5 # X point
1 .0 1 .0 1 . 0 # Gamma point in another c e l l .

t o l w f r 2 1 .0 d−12
enunit2 1 # Wil l output the e i g e n e n e r g i e s in eV

We set iscf as -2 to conduct a non-self-consistent calculation, and getden as -1 to print the result of electron
density. nband gives number of bands, occupied or unoccupied, for which wave functions are being computed along
with eigenvalues. Meanwhile, we set kptopt to -3 to define three segments in the Brillouin Zone, and ndivk to
10 12 17 to specify the divisions for each line. The parameter kptbounds gives the point which determine the
line we are interested in, and eunit sets the unit of eigenenergies as eV. The only tolerance criterion admitted for
non-self-consistent calculation is tolwfr, which also suppresses toldfe.

After the calculation, we can use AbiPy to visualize the result. The band structure of silicon crystalline is shown in
Fig.1. According to the division given in ndivk and the points given in kptbounds, there are three region separated
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FIG. 1. Band structure of silicon crystalline

by four points. From the figure, we can see that some of the bands are degenerate in some specific region. Only in
the region for X to Γ, we can see all of the eight non-degenerate bands. In the other region, there are six different
bands, two of which are two-fold degenerate. Also, the Γ and X point have high symmetry, where there are only four
distinct energy values for eight bands. In X point, there are four two-fold degenerate bands; while in Γ points, there
are two non-degenerate bands and two three-fold degenerate bands. The position of X, L and Γ is visualized in Fig.2.

FIG. 2. The line corresponding to the band structure
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