

Magnetic resonance angiography

To differentiate between flowing blood and stationary tissue, a very heavily T1-weighted sequence is used with a high tip angle pulse(get max signals from blood), a short TR value (minimize the stationary tissue signals, fast data acquisition)
→ gradient echo sequence with a large tip angle greater than Ernst angle (multi slice or 3D angiography)

With the use of contrast agents, very small vessels can be also seen

광주과학기술원

MRI contrast agents

- In many clinical applications, MRI doesn't require the use of contrast agents since there is enough CNR (T₁, T₂ or proton weighted) to distinguish diseased from healthy tissue.
- However, detection of very small lesions may require the use of contrast agent since the partial volume effect can occur.
- In addition, agents can be used in TOF angiography
- Two types of contrast agents
 - 1. Paramagnetic (positive agent)
 - 2. Superparamagnetic (negative agent)

· 광주과학기술원

광주과학기술

MRI Positive Contrast Agents

- Gd based agents are mostly used in the diagnosis of CNS disorders (tumors, lesions, gliomas, meningiomas)
- They pass through a leaky BBB and accumulate in tumors
- Typical Gd agents' dose is ~0.1mmol/kg (10ml at 0.5M)

$$\frac{1}{T_1^{CA}} = \frac{1}{T_1} + \alpha_1 C,$$

Where T_1^{CA} is T_1 of tissue after contrast agent administered, T_1 is preadministration value, and α_1 is the T_1 -relaxivity of the contrast agent

- A new agent, Gadovist (2008), is used in magnetic resonance angiography to study peripheral vascular disease, to detect arterial stenosis and plaque formation within arteries
- Until 2005, Gd agents were considered to be safe, but in 2005, Gd based agents are found to increase the risk of nephrogenic systemic fibrosis (NSF)

광주과학기술

MRI Negative Contrast Agents

- Negative contrast agents cause very strong inhomogeneities in the local magnetic field → water molecules diffusing through these localized inhomogeneities undergo very fast T₂ and T₂* relaxation → reduction in signal intensity from T₂* weighted gradient echo or T₂ weighted spin echo sequences
- These small particles are taken up primarily by Kuppfer cells (specialized macrophages in the liver) in the liver and also accumulate in the lymph nodes, spleen, and bone marrow
- These particles only enter the healthy Kuppfer cells in the liver and do not accumulate in tumors or other pathological structures.

Body Region →	Whole body SAR whole body	Partial body SAR exposed body part	Head SAR	Local SAR (a)		
				head	trunk	extremities
Operating Mode ↓	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
Normal	2	2-10 (b)	3.2	10 (c)	10	2
1st Level Controlled	4	4-10 (b)	3.2	20 (c)	20	40
2nd Level Controlled	>4	>(4-10) (b)	>3.2	>20 (c)	>20	>40
Short duration SAR	The SAR limit over any 10 s period shall not exceed two times the stated values					
Note: Averaging time of (a) Local SAR is determ (b) The limit scales dyn. NORMAL OPERATING mass) FIRST LEVEL CONTR(patient mass / patient m (c) In cases where the of that the temperature ris	f 6 minutes. nined over the mass amically with the rati MODE: Partial body DLLED OPERATING nass) prbit is in the field of e is limited to 1 °C	of 10 g. io "exposed patient m y SAR = 10 W/kg – (8 MODE: Partial body a small local RF trans	aass / patient 3 W/kg * expo 9 SAR = 10 W smit coil, care	mass": ised patie //kg – (6 ^v e should l	ent mass W/kg * ex be taken	/ patient kposed to ensure

13

Clinical applications

- Neurological applications
 - Acute: stroke, edema
 - Chronic: sclerosis, Alzheimer
 - Intracranial mass lesions
- Most of them require the use of positive contrast agent
- Increased water content (edema) shows high intensity in T₂ weighted sequence

White matter lesions which can be an early indication of multiple sclerosis

