

Contents
1. Introduction
2. Wave propagation and characteristic acoustic impedance
3. Wave reflection, refraction and scattering in tissue
1) Reflection, transmission and refraction at tissue boundaries
2) Scattering by small structures
4. Absorption and total attenuation of ultrasound energy in tissue
1) Relaxation and classical absorption
2) Attenuation coefficients 광주과학기술완

Characteristic acoustic impedance

• Characteristic acoustic impedance (Z) of tissue is

$$Z = \frac{p}{u_z}$$

this can be considered as a direct analogue to Ohm's law (p: voltage, u_z : current)

• The value of *Z* is determined by the physical properties of the tissue

$$Z = {p / u_z} = {\rho c u_z / u_z} = \rho c = \rho \frac{1}{\sqrt{\rho \kappa}} = \sqrt{\frac{\rho}{\kappa}} \qquad \left(c = {1 / \sqrt{\kappa \rho}} \right)$$

• Table 4.1 lists values of *Z* for tissues

	$Z \times 10^{5}$ (g cm ⁻² s ⁻¹)	Speed of sound (m s ⁻¹)	Density (gm ⁻³)	Compressibility x10 ¹¹ (cm g ⁻¹ s ²)	The unit of compressibility is same as
Air (in lungs)	0.00043	330	1.3	70 000	inverse of pressure
Blood	1.59	1570	1060	4.0	
Bone	7.8	4000	1908	0.3	
Fat	1.38	1450	925	5.0	
Brain	1.58	1540	1025	4.2	
Muscle	1.7	1590	1075	3.7	
Liver	1.65	1570	1050	3.9	
Kidney	1.62	1560	1040	4.0	1 광주과학기를

- P_r : reflected pressure, P_t : transmitted pressure
- *I_i*: incident intensity *I_r*: reflected intensity, *I_t*: transmitted intensity
- R_p : reflection pressure coefficient, T_p : transmission pressure coefficient
- *R_I*: reflection intensity coefficient, *T_I*: transmission intensity coefficient

$$\theta_i = \theta_r$$
, $\frac{\sin \theta_i}{\sin \theta_t} = \frac{c_1}{c_2}$ (Snell's law)

$$R_p = \frac{P_r}{P_i} = \frac{Z_2 \cos\theta_i - Z_1 \cos\theta_t}{Z_2 \cos\theta_i + Z_1 \cos\theta_t}, \ T_p = \frac{P_t}{P_i} = \frac{2Z_2 \cos\theta_i}{Z_2 \cos\theta_i + Z_1 \cos\theta_t}$$

 $R_I = \frac{l_r}{l_i} = \frac{(Z_2 \cos\theta_i - Z_1 \cos\theta_t)^2}{(Z_2 \cos\theta_i + Z_1 \cos\theta_t)^2}, \ T_I = \frac{l_t}{l_i} = \frac{4Z_2 Z_1 \cos^2\theta_i}{(Z_2 \cos\theta_i + Z_1 \cos\theta_t)^2}$

Incidence angle: 0 degree							
	Z1	Z2	C1	C2	Theta1(rad)	Theta2(rad)	R_I
air to muscle	0.00043	1.7	330	1590	0	0	0.998989
muscle to bone	1.7	7.8	1590	4000	0	0	0.412299
fat to muscle	1.38	1.7	1450	1590	0	0	0.010794
Incidence angle: 10 degree							
	Z1	Z2	C1	C2	Theta1	Theta2	R_I
air to muscle	0.00043	1.7	330	1590	0.174533	0.836668	0.999312
muscle to bone	1.7	7.8	1590	4000	0.174533	0.436851	0.443469
fat to muscle	1.38	1.7	1450	1590	0.174533	0.190414	0.011098
Incidence angle: 20 degree							
	Z1	Z2	C1	C2	Theta1	Theta2	R_I
air to muscle	0.00043	1.7	330	1590	0.349066	1.647915	1.000083
muscle to bone	1.7	7.8	1590	4000	0.349066	0.860428	0.543529
fat to muscle	1.38	1.7	1450	1590	0.349066	0.375043	0.011829
Incidence angle: 30 degree							
	Z1	Z2	C1	C2	Theta1	Theta2	R_I
air to muscle	0.00043	1.7	330	1590	0.523599	2.409091	1.000869
muscle to bone	1.7	7.8	1590	4000	0.523599	1.257862	0.733062
fat to muscle	1.38	1.7	1450	1590	0.523599	0.548276	0.012352

Wave reflection, refraction

- The strongest reflected signal will be when the angle between the incident wave and the boundary is 90°
- When the incidence angle is 0°, the previous equations can be reduced to:

$$R_p = \frac{P_r}{P_i} = \frac{Z_2 - Z_1}{Z_2 + Z_1}, \ T_p = \frac{P_t}{P_i} = \frac{2Z_2}{Z_2 + Z_1}$$

$$R_I = \frac{I_r}{I_i} = R_p^2 = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}, \ T_I = \frac{I_r}{I_i} = \frac{4Z_2Z_1}{(Z_2 + Z_1)^2}$$

- The values of the reflectance and transmission pressure coefficients are $T_p = R_p + 1$
- Intensity of reflection and transmission coefficients is related by T₁ + R₁=1 (conservation of energy)

광주과학기술원

광주과학기술원

- Three cases from $R_{\rm p}, T_{\rm p}, R_{\rm I}$ and $T_{\rm I}$

2) Z₁~Z₂ Ex) liver/kidney interface T_p~1, R_p<1, T₁~1, R₁<<1. most of signals transmit trough the boundary and reach the deep tissue
3) Z₁<<Z₂ Ex) from tissue into bone T₁=0, R₁=1, R_p=1 and T_p=2 T_p=2 means that the pressure at a single point at the boundary is actually twice that of the incident wave. As in case 1, almost all the energy is reflected back towards the transducer, except that there is no phase shift

광주과학기술

• Rayleigh scattering: scatterer's size is much smaller than the wavelength $(I \propto 1/\lambda^4)$

ex) red blood cells (5~10 μ m)causes very strong Rayleigh scattering by ultrasound (0.1~1.5mm wavelength) \rightarrow basis of Doppler ultrasound

